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We investigate thereentrantonset of chaos in “tubular image states,” which are loosely bound states
of electrons formed in the vicinitys20–40 nmd of conducting nanotubes. Chaos is shown to arise
when an electron is placed in the vicinity oftwo metallic nanotubess with a magnetic field applied
along the tubes. At stronger magnetic fieldsB,10 T, we observe the formation of Landau-like
states encircling the two-tube system, which wipe out the chaos. We canreinstall the chaos by
charging oppositely the nanotubes, thus breaking the symmetry of the system and correspondingly
the shape of the Landau-like states. Detailed analysis of the onset of chaos is done by studying the
statistical properties of the eigenvalues spectrum and by investigating the spatial autocorrelation
functions of individual eigenstates. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1865932g

I. INTRODUCTION

Much of the theoretical and experimental research on
quantum chaos has been performed on Rydberg atoms in
strong electric and magnetic fields.1 For high enough fields,
these systems undergo transitions from regular to chaotic be-
havior. This transition is indicated in the change in the sta-
tistics of the energy spectrum; the appearance of multiple
avoided crossing; and the high sensitivity of energy eigen-
values to small external perturbations.2–5 Analogous studies
have been performed on quantum dots, where chaos can be
introduced by applying magnetic fields on regular shaped
dots or due to the electron scattering with the dot’s irregular
boundaries.6 Chaotic electron dynamics has also been ex-
plored in other nanostructures, such as antidots arrays,7 reso-
nant tunneling diodes,8 quantum wells,9 and
superlattices.10,11

In this paper, we introduce a new type of quantum plat-
form for the investigation of chaos on thenanoscale: that of
image states formed when an electron hovers in the vicinity
of suspended nanowires, such as metallic carbon
nanotubes.12 We have shown that these image states, named
“tubular image states” sTISd, which extend some
,10–50 nm away from the tube’s surface, owe their stabil-
ity to the existence of angular momentum barriers that
largely delay the electron from collapsing on the surface.13 In
a recent experiment, the existence of TIS withprolonged
lifetimeswas reported in multiwall nanotubes.14 Therefore, it
is of interest to study TIS in other systems such as inhomo-

geneous nanowires15 and nanowire arrays.16 Recently, we
have also shown that in a single pair of parallel nanotubes
TIS can be tuned by electric and magnetic fields, which
could lead to the formation of chaos.17

Here, we thoroughly analyze the transition from regular-
ity to chaos of the double-tube TIS in the presence of crossed
electric and magnetic fields. In particular, we explore the
onsetanddisappearanceof chaos, as induced by the external
fields. The analysis makes use of the statistics of the energy-
levels distribution and the spatial behavior of autocorrelation
functions for individual wave functions. These two indicators
confirm and complement each other enabling us to explore
the onset of chaos both as a property of the entire energy
spectrum, and at the level of the individual eigenstate.

II. THE MODEL SYSTEM

In Fig. 1, we depict the system under investigation.17 It
is comprised of two parallel metallic nanotubes of radiusa,
whose long axes are aligned along thez direction. The cen-
ters of the tubes are placed atx= ±d/2 ,y=0. We apply an
external magnetic fieldB oriented along thez direction. We
also create an electric field directed in thex-y plane, by posi-
tively charging one nanotube, thereby increasing its potential
by Va, and negatively charging the other, increasing its po-
tential by −Va.

We assume that the nanotubes are ideally conducting
cylinders.12,18 When an external electron is placed at a dis-
tancer from the center of a tube it creates an image charge to
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which it gets attracted. For an infinitely long tube, the
screening potential felt by the electron due to the image
charges can be approximated by12

Vssrd <
2e2

pa o
n=1,3,5,. . .

li fsa/rdng, lisxd ; E
0

x dt

ln std
, s1d

interpolating well between the long-range −e2/ fr ln sr /adg
form and the near-surface 1/ur −au behavior.

In the charged two-tube system, an electron separated at
the distancer1 and r2 from the centers of the two tubes,
respectively, feels an additional potential due to the charging
of the tubes, given as18

VCsr1,r2d < eVa
ln sr1/r2d
ln sa/dd

. s2d

Here, we assume that the distance between the tubesd is
much larger than their radiia, i.e., d@a. VC has the correct
values of ±eVa when the electron is placed on the surface of
one of the tubes, i.e., whenr1=a and r2=d and vice versa.
Neglecting the short-range cross-polarization terms arising
from multiple reflections of image charges belonging to dif-
ferent nanotubes, the total potential energy of the external
electron is

VTsr1,r2d = Vssr1d + Vssr2d + VCsr1,r2d. s3d

We also apply to the system a uniform magnetic fieldB
oriented along thez axis of the tubes. Then the total Hamil-
tonian of the image state electron is

H =
1

2me
sp − eAd2 + VTsx,yd, s4d

where A =B/2s−y,x,0d is the vector potential of the field
in the Landau gauge andp is the generalized momentum of
the electron. It gives rise to two additional terms in the
Hamiltonians4d,

H1 = −
eB

2me
Lz, H2 =

e2B2

8me
sx2 + y2d, s5d

whereLz=−i"fxs] /]yd−ys] /]xdg is the angular momentum
operator andme is the electronic mass. In what follows we
ignore the electronic spin.

The total wave function of the external electron is sepa-
rable in thez coordinate,Csx,y,zd=cnsx,ydfkz

szd, hence its
energy is given asEn+ekz

. Thecnsx,yd component obeys the
Schrödinger equation

H− "2

2me
S ]2

]x2 +
]2

]y2D + VTsx,yd + H1sx,yd + H2sx,ydJ
3 cnsx,yd = Encnsx,yd. s6d

We solve Eq.s6d, by using a multidimensional discrete vari-
able representation algorithm.19 In the following section we
describe how the system’s eigenstates depend on the applied
electric and magnetic fields.

III. THE SYSTEM EIGENENERGIES

For large intertube separationsd and in the absence of
external fields, the low energy eigenstates are doubly degen-
erate, and the states in each doublet are localized around
different tubes.17 As d decreases, molecularlike states
emerge, with the degeneracy between states of different par-
ity being lifted, in direct analogy with the formation ofger-
ade and ungerade states of homonuclear diatomic
molecules.16

For weak magnetic fields, whereB is a perturbation to
VT, these states become gradually modified by theslineard H1

term, giving the Zeeman effect. AsB gets stronger, thesnon-
lineard H2 term of Eq. s5d dominates. From Eq.s5d, it is
obvious that this turnover occurs at lowerB for highly ex-
cited TIS,12 which are more detached from the tubes. In the
high-B limit, Landau-like states of a free electron in an ho-
mogeneous magnetic field are formed, whenVTsx,yd may be
neglected relative toH2. Using cylindrical coordinates,r
=sr ,f ,zd, these tube-free eigenstates are given as

Cnlksr d = eikzeilfunlsrd,

Enlk =
"2k2

2me
+

eB"

me
Sn +

1 + l + ul u
2

D , s7d

whereunlsjd~jul u/2e−j/2Ln
ul usjd, j=eBr2/2", andLn

ul u are the as-
sociated Laguerre polynomials,20 with n=0,1,2, . . ., l
=0, ±1, ±2, . . . . As weturn on and further increaseVa, the
Landau-like states get distorted, gradually losing their typical
shape altogether.17

In Fig. 2 sleftd, we display the dependence of the system
eigenenergies on the magnetic fieldB=0–35 T for Va=0.
The tubes radii a=0.7 nm and intertube separationd
=40 nm were used here and throughout the paper. We
present here only the high energy states,17 n=75–150, which
are strongly affected by the magnetic field. For intermediate
fieldsB,10 T, the system possesses a rather complex spec-
trum, which at higher fieldsB.20 T and quantum numbers
n*100 becomes more regular, due to the appearance of the
Landau-type statesssee dashed lines, and also Fig. 4d. In Fig.

FIG. 1. Tubular image states of electron in the vicinity of two parallel
nanotubes. The states are tuned by oppositely charging the tubes while ap-
plying a magnetic field directed along their long axis.
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2 srightd, we show the higher eigenenergies for theB=20 T
case as a function ofVa.

17 We can follow a series of Landau-
like states corresponding tosVa=0dn=119, 128, 132, 136,
138, 143. As we increaseVa, their energies start to move
down, accompanied by the collapse of the states on the right
tube, see also Fig. 4. We also observe a large number of
avoided crossings in the highVa regime.

IV. ANALYSIS OF THE ONSET OF CHAOS

A. Level spacing distribution

We now analyze in details the onset of chaos in the
above spectra. Most of the “generic” indicators of quantum
chaos are based on multistate properties. Such are the indi-
cators which examine the existence of avoided crossings,21

the average level density,5 and the level spacing
fluctuations.2,22–24 In particular, it is known that the level
spacing distribution should change from a Poissonian type to
a Wigner type for chaotic states which obey the eigenvalue
statistics of Gaussian orthogonal ensembles.

In Fig. 3 we demonstrate that such transitions occur for
TIS, as we turn on the magnetic and electric fields. We cal-
culate the level statistics in the energy window −18 meV
øEnø−9 meV and display it for five situations from Fig. 2:
The magnetic field is being increased from 0 to 20 T in cases
sad–scd. It is further accompanied by a growing electric field
in sdd and sed. With the parameterkSl being the average
energy spacing, we find that in casessad andscd, the nearest-
neighbor energy spacing distributions are clearly Poissonian,
P,e−S, indicating that the states are uncorrelated and the
system is regular. In contrast, the other cases can be approxi-
mately described by the Wigner distributionP, 1

2pSe−pS2/4,
indicating chaotic dynamics. Specifically, the data could be
well fitted to the Berry–Robnik distribution function24

PsS,qd = f2qs1 − qd + ps1 − qd3S/2ge−qS−1
4

ps1 − qd2S2

+ q2e−qSerfc fÎps1 − qdS/2g, s8d

interpolating well between the Poissonsq=1d and the
Wigner sq=0d distributions. Another indicator is the mean
square level spacingkS2l=e0

`PsS,qdS2dS, which should de-
crease from the value of 2 in the Poissonian case to 4/p
=1.27 for the Wigner distribution.24 In Fig. 3 we again find
that casessad and scd are regular, while the other systems
show an intermediate,sbd andsdd, or fully chaotic dynamics
sed.

These results of Fig. 3 show that in the absence of fields
the system is regularsad, and it starts to become chaotic only
as the magnetic field is turned onsbd. However, for stronger
magnetic fieldsscd the chaotic features are eliminated by the
the formation of the Landau-like states. Only as we increase
the electric field chaos reappears againsd,ed. We have also
verified, that the fitting parameterq systematically goes to
zero asVa is increased, demonstrating the smooth reappear-
ance and domination of chaos. Note that the Wigner-like
distribution observed in Fig. 3 agrees well with the strong
anticrossing observed in Fig. 2 with a level repulsion of de-
gree 1 asPsSd,S for S→0.23

In Fig. 4, we also reveal these transitions by showing
typical states from the five regimes discussed in Fig. 3. Plot
sad displays a molecularlike state for the zero field situation.
As the magnetic field is turned on, eigenstates become com-
plicated and manifest chaotic featuressbd, in accordance with
the transition from the Poisson to the Wigner distribution, as
shown in Figs. 3sad and 3sbd. Only when the magnetic field is

FIG. 2. sLeftd Dependence of the eigenstates on the magnetic fieldB where
Va=0. We show eigenstates numbers 75–150.sRightd Dependence of the
high energy statesn=101–145 onVa for B=20 T. Then index designates
the positions of thesVa=0d Landau-type states, wheren=143 is marked by
diamonds.

FIG. 3. Nearest-neighbor energy spacing histograms for states in the energy
regime −18 meVøEnø−9 meV. sad B=0,Va=0, sbd B=6 T,Va=0; scd B
=20 T,Va=0; sdd B=20 T,Va=0.010 V; sed B=20 T,Va=0.016 V. These
setups are marked by arrows at the top of Fig. 2. The smooth curves in the
histograms are the Poissonsad, scd and Wignersed distributions. The curves
in sbd, sdd are the result of a least square fit by Eq.s8d yielding q=0.31,
q=0.25.
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high enoughsB.10 Td, we observe the formation of regular
Landau orbitsscd, and reappearance of the Poissonian statis-
tics. However, as the electric fieldVa is turned on, the states
first shift sdd, then nest on one of the tubessed, and finally
develop chaotic nodal patternssfd.25 This behavior is consis-
tent with the proliferation of avoided crossings shown in Fig.
2 sRef. 21d and related changes of the statistics in Figs.
3scd–3sed.

We can compare the present system with other related
problems. In particular, the TIS in a single-tube system are
analogous to electronic states in a two-dimensionals2Dd hy-
drogen atom model system;26 both do not show chaos in
magnetic fields. On the other hand, the TIS in the pair of
nanotubes are analogous to states in a 2D hydrogenic mol-
ecule H2

+. When the Landau states form in stronger magnetic
fields, encircling both tubes at large distances, the system
effectively behaves again like a 2D hydrogen atom, with no
signs of chaos. This transition is disturbed by the application
of the electric field, so that we obtain again “molecular”
features, accompanied by the reentrance of chaos.

From this discussion it is also obvious that chaos should
be a property of a group of states in a certain energy interval.
This behavior is demonstrated in Fig. 5, for the system at
B=20 T andVa=0.016 V, by studying the nearest-neighbors
energy spacing distribution at different energy intervals. We
find that the low-energy states, located around individual
tubes, are mostly regular, sinceq=0.71 andkS2l=1.84sad. In
the intermediate energy regime, where the orbit sizes are
comparable tod, chaos predominates,q=0 and kS2l=1.30
sbd. Only as we go to higher energies, where the very high
Landau-like states encircle both tubes, the system partly re-
covers its regular behavior, andq=0.38 andkS2l=1.62 scd.

B. Autocorrelation functions
of the wave functions

We have seen above in Fig. 5 that chaos is localized in
certain regions of energy eigenstates. Its dominance was

identified through multistate properties. We could thus natu-
rally ask if one can study and characterize the onset of chaos
from single energy eigenstates.27 In analogy with classical
chaos, which is commonly associated with randomness and
the decay of correlations, one looks here at the decay of an
autocorrelation function built from the wave function itself.
Such an autocorrelation function can be defined27 as

Fsdd =E c*sqdcsq + dddq. s9d

Here theq integration is performed over a self-avoiding
space-filling path. In the present application, thed displace-
ment vector is also directed along this path. The discrete
version of this expression is

FIG. 5. Nearest-neighbor energy spacing histograms for theB=20 T,Va

=0.016 V system for different energy intervals.sad −29 meVøEnø
−18 meV; sbd −18 meVøEnø−9.5 meV; scd −9.5 meVøEnø−5.5 meV.
The smooth curves in the histograms are the result of a least square fit by
Eq. s8d.

FIG. 4. sColord Probability density for six representative states. In all casesd=40 nm and the tubes are located atx= ±20 andy=0. sad B=0 T,Va=0 V; sbd
B=6 T,Va=0 V; scd B=20 T,Va=0 V; sdd B=20 T,Va=8.5310−3 V; sed B=20 T,Va=1.2310−2 V; sfd B=20 T,Va=1.6310−2 V. The framesscd–sfd fol-
low the n=143 Landau-like statesmarked by “diamonds” in Fig. 2d as the electric field is increased.
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Fnfcg =
1

N
o
i=1

N

c*sr idcsr i+nd, n ø N, s10d

wherer1,r2, . . . ,rN is a cyclicsrN+n=rnd set of ordered points
belonging to the self-avoiding space-filling path.

According to the indicator proposed in Ref. 27 a wave
functionc is termed chaotic if its autocorrelation function is
aperiodic and rapidly decaying. In our case, since the TIS
wave functions are complex, due to the arbitrary gauge
choice, the autocorrelation function has an additional imagi-
nary part. In Fig. 6 we demonstrate the behavior ofFnfCg in
two extreme cases:sad a Va=0 “regular” state withB set at
20 T; scd an “irregular” state obtained when bothB and Va

are nonzero. The autocorrelation function shows nearly peri-
odic features in the first casesbd. In contrast it very rapidly
decays while fluctuating about zero, for the irregular state
sdd. In both cases, we magnify the values ofFnfCg, which is
normalized to 1 atd=0.

We have calculatedFnfCg also for the sequence of rep-
resentative states plotted in Fig. 4, as shown in Fig. 7. We
find that there is indeed a very strong correlation between the
statistical properties of the states, viewed in Fig. 3, the visual
distortion of the state as viewed in Fig. 4 and the disappear-
ance of the periodic features of the autocorrelation function.
Erratic sequences of oscillations inFnfCg are obtained either
when the magnetic field is weakB=6 T, or when a strong
magnetic field is combined with high electric field. We have
also checked that different constructions of the path lead ba-
sically to the same observations.

V. SUMMARY

We have shown that tubular image states formed above
pairs of nanotubes can become chaotic in the presence of
magnetic and electric fields. We have characterized chaos by
the energy spectrum statistics and by the properties of indi-
vidual states. These studies reveal that the present system
manifests several regimes with an unusualreentrantonset of
chaos. This behavior can be addressed to the special charac-
ter of this system, combining features of nanoscale, molecu-
lar, and Rydberg-atom systems. We expect that other phe-
nomena could be traced in these fascinating systems, when
more nanotubes are included, which could lead to novel po-
tential applications.
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