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Complete Control of Population Transfer between Clusters of Degenerate States
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We present an analytic solution to the ‘‘degenerate quantum control problem,’’ which enables the
transfer of any desired fraction of population between arbitrary initial and final pure wave packets,
made up of nearly degenerate energy eigenstates. It consists of two two-photon adiabatic passage steps,
in which the population of the initial wave packet is first transferred, via a number of nondegenerate
intermediate states, to a single eigenstate and then returned to a different target superposition state. We
demonstrate the approach by executing a stepwise isomerization of three Jahn-Teller states of the Al3O
molecule, where a proper optical coupling can easily be established.
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FIG. 1 (color online). The DQC scheme. (Upper panel)
Step 1: population in a space-localized wave packet j1iloc,
composed of n nearly degenerate eigenstates, is transferred
to a single state j0i, by a two-photon adiabatic passage via n
nondegenerate intermediate states. (Lower panel) Step 2: popu-
controlling the interference processes accompanying this
simultaneous multilevel coupling, we can achieve the full
generality of the DQC solution.

lation transfer by a time reversed process with different Rabi
frequencies from j0i to the target wave packet j2i0loc, composed
also of a set of nearly degenerate eigenstates.
Coherent control techniques use multiply interfering
quantum pathways [1] to selectively transfer population to
desired target states. In a complementary way, adiabatic
passage methods [2,3] enable the complete population
transfer between quantum states. Recently, both tech-
niques have been merged to achieve both selectivity and
completeness.With this approach [4], we have been able to
show how to purify a mixture of left-handed and right-
handed chiral molecules by several pulses.

The universality of the adiabatic passage techniques
was also greatly increased when they were applied in the
addressing or readdressing of several final degenerate
states [5–7]. An important extension of the (three-state)
adiabatic passage [3] was to act on wave packets com-
posed of many nondegenerate states [8]. We have thus
solved the ‘‘nondegenerate quantum control’’ (NQC)
problem, i.e., how to achieve a complete population trans-
fer between an arbitrary initial j�ii �

P
kci;k e

�i!kt jki
and a target j�fi �

P
k0cf;k0e

�i!k0 t jk0i wave packet,
formed of nondegenerate quantum states. This transfer
is realized by a multipath two-photon process, proceeding
via a single intermediate eigenstate, to which all the
nondegenerate states are resonantly coupled.

In this work, we further pave the way leading to the
complete control of quantum systems. We solve the ‘‘de-
generate quantum control’’ (DQC) problem, i.e., how to
transfer population between arbitrary pure wave packets,
j�ii � e�i!it

P
kci;kjki and j�fi � e�i!ft

P0
kcf;k0 jk

0i, com-
posed of nearly degenerate energy eigenstates, for which
the nearest-neighbor separations are much smaller than
the bandwidth of the laser pulses used. We can separately
address all the nearly degenerate levels, jki and jk0i, by
coupling each of them differently to all of the many
nondegenerate eigenstates, jji and jj0i, that form inter-
mediate states of the applied two-photon processes. By
0031-9007=04=92(11)=113003(4)$22.50 
We solve DQC in two steps, illustrated in Fig. 1. In
step 1 (upper panel), we use a pair of laser pulses to
adiabatically transfer the population of the initial wave
packet j�ii �j1iloc�, composed of the nearly degenerate
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energy eigenstates jki (k � n	 1; . . . ; 2n), to a single
(‘‘parking’’) state j0i, using the nondegenerate auxiliary
states jji (j � 1; . . . ; n) as intermediates. The ‘‘dump’’
(D) pulse, linking the jji states and the j0i state, charac-
terized by Rabi frequencies �1;...;n;0, is followed by a
‘‘pump’’ (P) pulse, linking the jki states with all the jji
states, characterized by �n	1;...;2n;1;...;n. In step 2 (lower
panel), the population in the parking state j0i is trans-
ferred, by time reversing the dump and pump pulses of
step 1 and using different Rabi frequencies, to the target
wave packet j�fi (j2i0loc), composed of the same (or a
different) set of nearly degenerate eigenstates jk0i.

We now describe the pulses used in DQC. In the first
step the total electric field is

~EE�t� � Re

Xn
j�1

f ~EE0;j�t� e
�i!0;jt 	 ~EEj;i�t� e

�i!j;itg; (1)

while in the second step i ! f and the roles of the D and P
pulses are reversed. The dump ~EE0;j�t� � �̂�0;j E0;j�t� and
pump ~EEj;i�t� � �̂�j;i Ej;i�t� field components are character-
ized by the polarization directions �̂�j;i and the slowly
varying amplitudes E0;j�t� and Ej;i�t�. The central fre-
quencies of the field components are chosen to be near
resonance with the system’s transition frequencies, !0;j �
!0 �!j and !j;i � !j �!i. The complex Rabi frequen-
cies, expressed in atomic units ( �h � 1), are �j;i�t� 

~��j;i � ~EEj;i�t�, where ~��j;i are the transition-dipole matrix

elements. They have common time envelopes, �j;i�t� �
Oj;i fD�P��t�, with fD preceding fP in both steps.

The system’s wave function can be expanded in each
step as j�i �

P
2n
i�0 ci�t�e

�i!itjii, where the column vector
c�t� � �c0; c1; . . . ; cn; cn	1; . . . ; c2n� of coefficients is ob-
tained by solving the matrix Schrödinger equation,
_cc�t� � �iH�t� � c�t�. Here, H�t� denotes the effective
Hamiltonian in the rotating waves approximation,

H �t� �

0
@ 0 �0 0
�y
0 0 HF

0 Hy
F 0

1
A; HF �

0
@�1

� � �

�n

1
A; (2)

and

�0 � ��0;1; . . . ;�0;n�; �j � ��j;n	1; . . . ;�j;2n�;

j � 1; . . . ; n; (3)

with y denoting the adjoint operation. The �0�n vectors
of Rabi frequencies are different in the two steps because
they control the population transfer between different
wave packets.

We show that the two DQC steps can address or read-
dress arbitrary wave packets only if the Rabi vectors
f�1; . . . ;�ng, which couple the (k � n	 1; . . . ; 2n)
nearly degenerate levels to the (j � 1; . . . ; n) nondegener-
ate levels, are linearly independent. In this case, D 

det�HF� � 0 and the Hamiltonian H�t� has just one zero
eigenvalue, with the corresponding (‘‘null’’ or ‘‘dark’’)
eigenvector being given as �1; 0;x�, 0 denotes an
n-dimensional zero vector, and x is an n-dimensional
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vector given as x � �H�1
F �

y
0 . Direct operation of H�t�

on �1; 0;x� confirms that this is the null state.
Then, if the �0 vector of Eq. (3) is proportional to the

kth column of the Hermitian HF � Hy
F matrix,�y

0 / �y
k

(k � 1; . . . ; n), the �1; 0;x� vector correlates at the end of
step 1 (start of step 2) with the j0i state and at the start of
step 1 (end of step 2) with the jn	 ki nearly degenerate
state. The linearity of the above equations guarantees that
with the choice �y

0 /
P

n
k�1 ak�

y
k the null state is corre-

lated at the start of step 1 (end of step 2) with theP
n
k�1 akjn	 ki superposition state. Thus, complete con-

trol over the population transfer between arbitrary wave
packets, composed of nearly degenerate states, can be
achieved. The efficiency of the two DQC steps is not
lowered by the mutual nonorthogonality of the linearly
independent vectors �y

j (j � 1; . . . ; n). This is because
the nonorthogonality is corrected for in the null vector,
where �y

0 �/
P

n
k�1 ak�

y
k � gets multiplied by the H�1

F ma-
trix, which, according to Eq. (2), is the inverse of the �y

k
(k � 1; . . . ; n) matrix.

In addition to controlling arbitrary wave packets, we
can choose, in both DQC and NQC [8] schemes, the
fraction of population transferred. Thus, starting from
an arbitrary initial j�ii �

P
2n
k�n	1 ci;kjki wave packet

and using �y
0 �

P
n
k�1 ak�

y
k , where ak � ci;k, the amount

of population transferred is given by the square of the
scalar product, ja � c�i�j2, of the c�i� � �ci;n	1; . . . ; ci;2n�
and the a � �a1; . . . ; an� vectors. In contrast to NQC,
the second step of DQC can be executed effectively
only if all the nearly degenerate final jki states are ini-
tially empty. If these are populated at the start, j�fi �P
2n
k�n	1 c

f
k jki (all cfk � 0), the vector amplitude c�f� can-

not be orthogonal to all the n linearly independent vectors
�l, which make up the dump pulse, and they are thus
depopulated from the start.

Let us test the DQC solution on molecular systems
with several quasistable (symmetry-related) configura-
tions of equal energies. Chiral molecules, for example,
possess two such configurations, the so-called en-
antiomers [4], while more configurations can be found
in Jahn-Teller molecules [9]. As a particular example, we
consider the Al3O molecule, which possesses three local
energy minima [10]. As shown in Fig. 2, they are char-
acterized by C2v planar T-shaped geometries, separated
by three planar saddle points with C2v Y-shaped configu-
rations [10]. In order to achieve the desired transfer
(pseudorotation) between the three T configurations, we
hinder the overall rotation by (loosely) binding the mole-
cule to a larger system, such as a solid surface or the
inside of a large (inert) molecular ‘‘pocket’’ [11]. By
doing so, we also orient the Al3O molecule such that
the out-of-plane motion of the O atom relative to the
Al3 triangle coincides with the z direction.

The three quasistable T configurations result in a set of
triplet in-plane vibrational states. For energies well below
the isomerization barrier, the eigenstates in each triplet
113003-2



FIG. 2 (color online). The three Jahn-Teller minimum con-
figurations of the Al3O molecule, with the XY3 symmetry,
shown together with the three intermediate saddle point struc-
tures. In the center, we present the potential along the coor-
dinates for the molecular isomerization (s direction) and the
motion of the X unit out of the Y3 plane (z direction).
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are nearly degenerate and thus can be superimposed into
three states that coincide with the three T configurations,
in the considered time scale of the experiment. At the
same time, eigenstates in triplets of higher energies are
no longer nearly degenerate. Thus, in principle, the states
needed in DQC are readily available, but we still need to
pick those that assure the linearly independent coupling.
A direct option is to use additional states related with the
out-of-plane vibrational mode, coupled by the z-polarized
light, as described below.

We obtain, using ab initio methods, the potential and
electric dipole surfaces of a two dimensional (2D) sub-
space of the full (6D) configurational space of Al3O [12].
The 2D subspace (see Fig. 2) includes as one coordinate,
denoted by s, the motion along the minimum energy path
for isomerization, and as the other coordinate, the out-
of-plane bending mode motion of Al3O along the z axis.
The height of the isomerization barrier thus obtained,
� 320 cm�1, is in good agreement with other calculations
[10]. Since the energy of the equilateral D3h-symmetric
Al3O structure is very high, �9200 cm�1 [10], the inclu-
sion of only the ground electronic surface should be
sufficient for evaluation of the lower-energy end of the
vibrational spectrum.

To calculate the relevant eigenstates and eigenenergies,
we solve the 2D nuclear Schrödinger equation H��s; z� �
E��s; z�, by using the discrete variable representation
techniques [13]. The Hamiltonian for the angular mo-
mentum J � 0 in generalized coordinates fq1; q2g �
fs; zg and their conjugate momenta @q 
 �i �h@=@q is
given by [14]
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H �
1

2

X
q1;q2

@�q1Gq1q2�s; z�@q2 	 u�s; z� 	 V�s; z�: (4)

Here, V is the potential energy of the ground potential
surface of Fig. 2 and u is the ‘‘pseudopotential’’ [14]

u�s; z� �
�h2

8

X
q1;q2

@
@q1

�
Gq1q2

@ lnjgj
@q2

�

	
1

4

@ lnjgj
@q1

Gq1q2

@ lnjgj
@q2

; (5)

where g is the covariant and G is the contravariant metric
tensor, respectively, given by

gq1q2 � ma
@~xxa
@q1

�
@~xxa
@q2

; Gq1q2 � m�1
a

@q1
@~xxa

�
@q2
@~xxa

; (6)

and jgj is the determinant of g. Here,ma is the mass of the
ath atom in the molecule and ~xxa its Cartesian coordinate
vector in the center-of-mass molecule-fixed frame; the
summation convention over dummy indices is implied.

The vibrational levels for both the isomerization (s) and
the out-of-plane (z) modes appear in triplets. Each triplet
can be characterized by the fvs; vzg numbers of nodes in
each of the three wells and the particular mode (see also
Fig. 3). It contains two degenerate and one separated
eigenstates, where the level order alternates from triplet
to triplet, with the lowest eigenstate being nondegenerate.
In the lowest triplet f0; 0g, the level separation,�E � 2�
10�5 cm�1, determines the tunneling time, &i � h=�E �
1:6 �s, between the three configurations of the molecule.
These three eigenstates jki (i � 1; 2; 3) are shown in
Fig. 3(a). We superimpose them to form the initial and
final broken-symmetry wave packets, j�ii �

P
kci;kjki

(i � 1; 2; 3), that are localized in the three Jahn-Teller
wells, as displayed in Fig. 3(b). The three nondegenerate
delocalized states in the f4; 0g, f6; 0g, and f4; 1g triplets are
chosen as the jji intermediate states, shown in Fig. 3(c).
Finally, the nondegenerate state in the f6; 1g triplet, pre-
sented in Fig. 3(d), is used as the parking state j0i.

The light pulses that couple the states must be quite
different. Thus, the three nondegenerate intermediate
states f4; 0g, f6; 0g, and f4; 1g are coupled to the nearly
degenerate localized states j�ii by pulses polarized in the
x, y, and z directions, respectively, while they are coupled
to the parking j0i state by pulses polarized in the z, z, and
y�x� directions, respectively. In this way we are able in
DQC, despite the high symmetry of the Al3O molecule,
to tune the field amplitude to achieve the required linear
independence of the �1, �2, and �3 Rabi vectors.

The Rabi frequency amplitudes for both DQC steps
are �j;k�t� � �max

j;k fexp���t	 &�2=&2� 	 exp���t� &�2=
&2�g and �k;0�t� � �max

k;0 fexp���t 	 3&�2=&2� 	
exp���t � 3&�2=&2�g, with �max

j;k � �max
k;0 � 0:2 cm�1

and & � 5 ns. The dipole elements are of the order
10�3–10�1 D. The duration of laser pulses is roughly
113003-3



FIG. 3 (color online). (a) The three lowest energy eigenstates
of the system in the s and z molecular coordinates.
(b) Superpositions of these eigenstates form localized states
about each Jahn-Teller well. (c),(d) The used intermediate and
parking states of DQC, respectively. (e) Time-dependent DQC
dynamics of the transfer between the first and second wells.
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8& � &i, so that the j�ii states remain localized in their
corresponding potential wells for a sufficiently long time
to be used as the initial states of the DQC scheme.

In Fig. 3(e), we display the time evolution of the
system, during the two steps of the DQC transfer. The
z-integrated probability density

R
dzjhs; zj��t�ij2 is pre-

sented as a function of s and t. We start with the localized
j�1i state being initially populated, by a selection or
distillation process. At the end of step 1, its population
is parked to the excited delocalized j0i state, using as
intermediate the jji � j1i � j3i states that remain un-
populated throughout the process. During a reasonably
short parking, where we assume that a little population is
lost due to relaxation, the bulk of the probability density
is symmetrically concentrated near the three saddle
points. Finally, at the end of the second step, the parked
population is transferred to the localized j�2i state.

The presented control of the Jahn-Teller isomerization
in the Al3O molecule clearly demonstrates the power of
the DQC solution. We can control stable isomers in the
same way, if their intermediate states belong to an ex-
cited electronic surface. In more complex problems, we
might include other physical degrees of freedom, to as-
113003-4
sure the linearly independent coupling, or even use more
parking states. Besides its fundamental importance in
understanding the degenerate quantum control, the pre-
sented approach could be applied in numerous practical
systems, such as photoactive nanoscale devices [15].
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