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Quantum kinetic theory of two-beam current injection in bulk semiconductors

P. Král and J. E. Sipe
Department of Physics, University of Toronto, 60 St. George Street, Ontario, Toronto M5S 1A7, Canada

~Received 11 March 1999; revised manuscript received 1 September 1999!

We develop a theory of current injection in bulk semiconductors by simultaneous excitation with two laser
beams with frequencies 2v0 , v0. Coherent mixing of the resulting one- and two-photon transitions generates
aneffective field Ae f f(k) with different strengths at6k points in momentum space. This asymmetry in carrier
generation, producing the induced current, iscontrolledby the relative phase of the two fields. Quantum kinetic
equations for the photogenerated carriers are derived from nonequilibrium Green functions. They are simplified
here to the Boltzmann limit, and applied to a model of GaAs in the presence of LO phonons. Different forms
of the conduction electron distributions result for generation from light- and heavy-hole bands, and give
different saturation and relaxation rates for the induced current. Generation of THz radiation by the current is
also discussed.
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I. INTRODUCTION

Two coherent laser beams at frequencies 2v0 and v0,
connecting the ground state of an atom to its ionized st
by one- and two-photon transitions, respectively, can be u
to eject electrons in a preferred direction by adjusting
relative phase of the two beams.1 The effect is a consequenc
of a quantum interferencebetween electron wave functio
components of different parities, associated with the t
transition processes. An analogous scheme has been
gested for the control of the ionization of a defect in
semiconductor,2 and later such an injection of dc current w
observed in a semiconductor quantum well.3

More recently, it has been realized that two-beam inj
tion of dc current can be effected by excitation of a bu
semiconductor above the gap,4 where the band-gap energ
Eg satisfies 2\v0.Eg.\v0. Here the current injection in
conduction and valence bands follows naturally from the f
that one- and two-photon excitation amplitudes interfere
ferently for wave vectorsk and2k. The injection rates have
been calculated using a Fermi’s golden rule approach
typical semiconductors, with the momentum relaxation
scribed by the inclusion of a phenomenological relaxat
time in the hydrodynamic equations for the current.4 This
gives a semiquantitative agreement between theory
experiment,5,6 but the kinetics of carrier injection and relax
ation has not yet been studied. Other current inject
schemes7 and coherent control methods have been a
investigated.8–10

We use nonequilibrium Green functions11–16 to derive
quantum kinetic equations for the two-beam current inject
and relaxation. From a diagrammatic analysis we first find
effectivefield self-energyS f , describing the quantum inter
ference of the one- and two-photon processes, and givin
tunable anisotropy of injected carrier population in the B
louin zone. The absolute value ofS f forms theexpansion
parameter in the transport equations. We explicitly fin
quantum kinetic equations quadratic inS f . For our model
calculations, they are simplified to the Boltzmann limit a
solved for pulsed and steady-state excitations in bulk Ga
in the presence of scattering by LO phonons. The injection
PRB 610163-1829/2000/61~8!/5381~11!/$15.00
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carriers from light~lh! and heavy hole~hh! bands gives dif-
ferent electron distributions in the conduction band and d
ferent momentum relaxation rates.17

The paper is organized as follows. In Sec. II we pres
the model for the photogeneration and relaxation of carr
in bulk semiconductors. In Sec. III the field self-energyS f
for two-beam injection is obtained. Section IV is devoted
the derivation of the approximated quantum kinetic eq
tions. Numerical results of the current injection in GaAs,
the Boltzmann approximation, are presented in Sec. V.

II. MODEL SYSTEM

In Fig. 1 we schematically show the excitation of a sem
conductor by two laser beams. The fields, with frequenc
2v0 andv0, lead to one- and two-photon transitions betwe
the valence and conduction bands, respectively. The tra
tion amplitudes for the two processes have opposite par
in reciprocal space, so their interference can result in diff

FIG. 1. Excitation of the semiconductor at6k mixing transition
amplitudes from the two optical fields. The following carrier rela
ation by LO-phonon emissions, and absorptions are denoted by
mal levels with the indexn.
5381 ©2000 The American Physical Society
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5382 PRB 61P. KRÁL AND J. E. SIPE
ent carrier generation rates at6k in the Brillouin zone. In
coherent control experiments,5,6 injected currents can be ob
served with injected carrier densities as low asni
'1014 cm23. At such low densities, scattering from LO
phonons, indicated in Fig. 1, provides the fastest relaxa
of the momentum of excited particles.

Even at these low densities, carrier-carrier interaction18

can modify the current injection through excitonic effects19

These become negligible far above the band gap, and
simplicity we neglect them here. At larger injection den
ties, ni'1016 cm23, carrier-carrier scattering dominate
over LO-phonon scattering.20,21 Then the injected carrie
populations, with opposite quasimomenta in the conduc
and valence bands, can rapidly thermalize to form hot Fe
seas, with their center wave vectors shifted from the ce
of the Brillouin zone. At higher densities, momentum rela
ation by Auger transitions between the conduction and
lence bands can also become important.22

Here we only consider current injection in the low carr
density limit, and model our system by a Hamiltonian th
includes only LO-phonon scattering:

H5(
a;k

«a~k!aa,k
† aa,k2 (

a,b;k

e

c
A~ t !

•@vab~k!aa,k
† ab,k1H.c.#1(

q
\vqbq

†bq

1 (
a;k,q

Maa~q!aa,k
† aa,kÀq~bq1b2q

† !. ~1!

The creation~annihilation! operatorsaa,k
† (aa,k) describe

electrons in banda and at wave vectork in the Brillouin
zone. In the excitation term,vab(k) are the velocity matrix
elements, andA(t) is the vector potential; theA2(t) term has
been neglected in Eq.~1!, since it only introduces a phas
shift in the total wave function of the system. We take t
vector potential to be

A~ t !5@Av0
~ t !e2 iv0t2 iuv01A2v0

~ t !e22iv0t2 iu2v0#1c.c.,
~2!

whereAv0
(t) andA2v0

(t) are real, slowly varying, envelop
functions; the formalism can be also extended to slow
chirped pulses. Intraband scattering is described by the
trix elementsMaa(q) for the electron-phonon coupling,23

without considering phase-dependent prefactors relevan
different bands.18 In the approximation of a constant LO
phonon energy\vq'\vQ , they are equal to

Maa
2 ~q!5M2~q!5

M0
2

uqu2
, M0

252pe2A\vQS 1

«`
2

1

«0
D .

~3!

The q-dependence ofMaa
2 (q) is responsible for the relax

ation of the injected carrier momenta. In the numerical c
culations below, parameters relevant for GaAs~Ref. 24! are
used;\vQ536 meV, «0512.5, and«`510.9.
n
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III. DESCRIPTION OF THE TWO-BEAM EXCITATION

We describe thetwo-beam coherent controlby nonequi-
librium Green functions in a matrix form,12–16 as defined in
Appendix A. The causal functionG in Eq. ~A1! satisfies a

Dyson equation~integration overt̄ 3 , t̄ 4):

G~k;t1 ,t2!5G0~k;t1 ,t2!

1G0~k;t1 , t̄ 3!S~k; t̄ 3 , t̄ 4!G~k; t̄ 4 ,t2!. ~4!

Here G05Gab
0 dab is the free Green function, andS is the

electron self-energy, which includes contributions from t
interaction with the electromagnetic field and the phonons
can be formally separated into fieldSf and scatteringSs

parts, as in one beam excitation, even though here both
functionals ofG. While Ss has a standard form, determine
by the scattering diagrammatics, the field self-energySf can
be constructed by combining the one- and two-photon tr
sitions relevant in this problem. ThisSf forms an effective
external field,11 whose absolute value gives a naturalexpan-
sion parameter. The injection efficiency can be characterize
by the ratio of minimum and maximum values ofSf(k) at
different k @see Eq.~6!#.

The field self-energySf can be obtained by expandingG
in the two laser fields. For small excitation energies the r
populations are injected only into one conduction~c! band
and the nearest light- and heavy-hole (v) valence bands,
while the two-photon part of the carrier injection includ
virtual transitions involving all bands.4 Therefore, the real
processes can be described by two-by-two ma
Gab (a,b5c,v). The nonzero off-diagonal elementsS f ;cv

and S f ;vc for interband driving give the propagatorsS f ;cv
r ,a

5S f ;cv5S f ;vc* and the correlation partsS f ;ab
^,& 50.

The first few terms in the diagrammatic expansion ofG in
the separate field components from expression~2! are shown
in Fig. 2. The terms following include electron-phono
diagrams25 and diagrams combining the two processes. W
use the rotating wave approximation~RWA!16 throughout,
since our focus is on real injected populations. The field w
frequency 2v0 can induce resonant transitions betweenc and
v bands, as shown in Fig. 2 by the first diagram on the ri
side ofG0. For a field with frequencyv0, the same diagram
is nonresonant~crossed!, but that component contributes i
second order~and higher even orders!, as shown in the nex
diagram.

In the lowest order, the effective field self-energySf can
be constructed by adding the two diagrams from Fig. 2.
the RWA, it is equal to

FIG. 2. The diagrammatic expansion of the Green function
the excitation fields. The field self-energySf results from combina-
tion of one- and two-photon diagrams.
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S f ;cv~k,t1 ,t2!52
e

c
vcv~k!•A2v0

~ t1!e22iv0t12 iu2v0d~ t12t2!

1
e2

c2 (
a

vca~k!•Av0
~ t1!Gaa~k,t12t2!vav~k!•Av0

~ t2!e2 iv0(t11t2)2 i2uv0, ~5!
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where Gaa(k,t12t2) corresponds to ‘‘instantaneous’’ off
resonant virtual transitions. Dressing of this function is n
crucial, unless momentum relaxation is large or higher-or
phenomena in the fieldA(t) are investigated. In the two
band model adopted here, virtual transitions involving hig
bands in the two-photon part from Eq.~5! are neglected (a
5c,v). Inclusion of these terms4 would rescale the magni
tude of the two-photon amplitude by 10–20 %.

For steady-state excitations, the Dyson equation~4! with
the field self-energyS f ;cv from Eq. ~5! can be Fourier trans
formed to the frequency representation.11 For laser beams
polarized in thex direction, this provides the elements

S f ;cv~k!52
e

c
vcv

x ~k!S A2v0

x e2 iu2v0

1
e

c
~Av0

x !2e2 i2uv0

vcc
x ~k!2vvv

x ~k!

\v0
D . ~6!

In transport equations, the frequency argument of Gr
functions following S f ;cv(k) are shifted by 2v0 @see Eq.
~B2!#. In the second term of Eq.~6!, the free-electron energ
\v'«c(k) is used in the approximate virtual propagato
Gvv

0,r(k,v2v0)'2Gcc
0,r(k,v2v0)'1/\v0, giving opposite

signs atvcc
x (k), vvv

x (k). The large bracket in Eq.~6! is an
effective excitation fieldAe f f(k) with different amplitudes in
the 6k directions, since the second term has parity oppo
the first term@vaa

x (k)52vaa
x (2k)#. The direction ofk for

which uAe f f(k)u is larger can be tuned by adjusting th
phasesu2v0

anduv0
, which gives a control over the curren

directionality. Note that the carrier quasimomentum is co
served during the injection process, while the totalmomen-
tum of carriers injected in each band has the same sign,
it is provided by the lattice.

Quantum interference of the wave-function compone
coming from the two transition amplitudes can be suppres
if their phases are randomized by scattering. This ph
relaxation26 can be also seen as a decoherence process.27,28In
a coherent control scheme, with two independent excita
paths, space or time fluctuations either from scattering
external fields could lead to such decoherence, which ca
also seen as a kind of inhomogeneous broadening.29 We de-
fer those issues to future studies.

IV. KINETIC EQUATIONS

The light-induced currentJ is proportional to the momen
tum imbalance in the nonequilibrium population of carrie
We can conveniently address the description of this imb
ance with theintegral form of the Kadanoff-Baym quantum
transport equations.30,31 This is because the nonequilibrium
electron correlation functionsG, and G. ~populations! in
t
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Eq. ~A2! in the zeroth iteration give the field-induced cu
rent, which is iteratively dressed by scattering.

The equation forG, (G.) has the following form:

G,~k,t1 ,t2!5Gr~k;t1 , t̄ 3!Ss
,~k; t̄ 3 , t̄ 4!Ga~k; t̄ 4 ,t2!

5(
l 50

`
1

l !
Gl

,~k,t1 ,t2!. ~7!

Here we neglect the term associated with initial distributio
that decays in the presence of interactions,32 since we assume
that inelastic scattering is turned on adiabatically fromt5
2`; another approach can be adopted in simplified mo
situations.15 The right side of Eq.~7!, which includes both
injection and scattering, is expanded into contributionsGl

,

in l th powers of the field self-energySf , to obtain equations
for different order coherent control phenomena. A simi
expansion was used by Scha¨fer and Treusch12 in a different
optical excitation problem.

To close the equations forG, andG. in Eq. ~7!, expres-
sions for the nonequilibrium scattering self-energy partsSs

,

andSs
. are also needed. We use them in the self-consis

Born approximation25

Ss
,~k,t1 ,t2!5M ~ q̄!G,~k2q̄,t1 ,t2!D,~ q̄,t1 ,t2!M ~ q̄!.

~8!

Here D is the standard phonon Green function
equilibrium,23 and theM ’s are the phonon matrix element
which are nonzero on the band diagonal@see Eq.~3!#. The
nonequilibrium propagatorsSs

r ,a result from Eq.~8! as in
Eqs.~A3! and ~A6!.

The propagatorsGr andGa in Eq. ~7! can be expressed in
terms ofG, andG. as in Eq.~A3!, or they can be formally
obtained by inversion of the Dyson equation~4!. In the co-
herent control problem, the poles of the fullGr give different
quasiparticle spectra at6k. The equilibrium propagatorsG0

r

have nonzero diagonal elements

G0;aa
r ~k,v!5

1

\v2«a~k!2S0;aa,s
r ~k,v!

, ~9!

related to the equilibrium correlation functionsG0;aa
^,& as in

Eq. ~A4!. The steady-state form of the first two expansi
terms in Eq.~7! is found in Appendix B. In the following, the
equations in the second-order term are approximated, s
ing with the one-particle~spectral! part in the scattering self
energyS0;aa,s

r .
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A. Approximations of the scattering self-energy

In metals, the electron self-energySs
r(k,v) for scattering

with LA phonons depends weakly on the absolute value
the wave vectork5uku because of weak scattering close
the Fermi level and the small ratio of phonon and elect
velocities. Therefore, thek dependence ofSs

r(k,v) can be
effectively neglected in the derivation of generalized tra
port equations.33,34 In polar semiconductors, such as GaA
the energy difference between electron levels related by
phonon emission and absorption processes~see Fig. 1! is
comparable to their broadening; i.e., the times scales for p
non oscillation and electron relaxation are of the sa
order.21 When the level width is projected through the ele
tron spectral functionAa(k2q̄,v2v̄) on the momenta, dif-
ferent matrix elementsM (q̄) are encountered in each leve
which makes the self-energy~8! momentum dependent.

In a first approximation, we simply neglect this depe
dence, as is done in metals. The self-energy becomesk inde-
pendent if the elementM (q̄) is kept fixed in the integration
over the absolute value ofuq̄u. We setq̄ in M (q̄) equal to the
valuekres

n 2kres
n61 for the difference of the centers for neigh

bor levels, located for simplicity at the free-electron energ
Eres

n 5Eres
0 1n\vQ . This approximation freezes the scatte

ing ratewithin each level, but preserves the dependence
the matrix elementM (kres

n 2kres
n61) on the angle between th

initial wave vectorkres
n and the final wave vectork̄res

n61 . The
first can be placed on thex axis, kres

n 5kres
n (1,0,0), and the

second in thekx-kz plane, k̄res
n615kres

n61@cos(f̄),0,sin(f̄)#,
where the anglef̄P(0,p) operates. The angle ofk̄res

n in the
orthogonal ky-kz plane is ūP(0,2p). We use parabolic
bands with effective massesmc50.067me , mlh50.082me ,
andmhh50.53me .

With these approximations, and using Eqs.~8!, ~9!, and
~A4!, thek-independent functionS0;cc,s

. (S0;cc,s
, 50) for the

nth level can be obtained in the form

S0;cc,s
. ~n,v!5M0

2E
0

pdf̄

2p
sin~f̄ !E

0

` dk̄

2p
k̄2

3FAc~ k̄,v2vQ!

ukres
n 2 k̄res

n21u2
@11nB~vQ!#

1
Ac~ k̄,v1vQ!

ukres
n 2 k̄res

n11u2
nB~vQ!G ; ~10!

a similar result holds forS0;vv,s
, (S0;vv,s

. 50). The integra-

tion over ū gives unity, andnB(v)51/@exp(\v/kT)21# is
the Bose-Einstein distribution. If the scattering parameteg
5(M0 /\vQ)2 increases in value (g.0.1),35 the electron
levels become broadened and the optical transitions detu
Then thev dependence ofS0;cc,s

. (n,v) reflects the changing
density of stateswithin these quasiparticle levels@see the
discussion after Eqs.~14!#.

B. Approximations of the transport equations

We also approximate the transport equations for none
librium correlation functionsG2;cc

, andG2;vv
. to second order

in S f ;cv(k). In the steady state, they are found in Append
C:
f

n

-
,
-

o-
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-

s
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i-

G2;cc
, ~j!5uG0;cc

r ~j!u2@2uS f ;cv~k!u2G0;vv
, ~j22j0!

1M ~ q̄!2G2;cc
, ~j2 j̄ !D,~ j̄ !#,

~11!
G2;vv

. ~j!5uG0;vv
r ~j!u2@2uS f ;vc~k!u2G0;cc

. ~j12j0!

1M ~ q̄!2G2;vv
. ~j2 j̄ !D.~ j̄ !#,

wherej5(k,v), j05(0,v0). The first terms on the righ
sides describe the optical injection of carriers by interba
transitions; the expansion prefactor 2 cancels 1/2! from
~7!. The second terms describe the intraband ‘‘injection’’
phonon relaxed carriers with a different energy and mom
tum. To keep the picture consistent, these equations, re
senting the two-particle part of the problem, must be a
proximated in the same way as the self-energy~10! from the
one-particle part. In particular, we make the transport ve
cesS2;nn,s

^,& k independent.

Here the ū integration does not equal unity, since th
relaxation of electrons out of thekx axis ~nonzero f)
no longer has cylindrical symmetry. Using the notati
kres

n 5kres
n @cos(f),sin(f),0# and k̄res

n615kres
n61@cos(f̄),

sin(f̄)sin(ū),sin(f̄)cos(ū)#, and fixing these vectors in th
uq̄u integration as before, we arrive at the transport vertex
the k-independent approximation~10!:

S2;cc,s
, ~n,f,v!5M0

2E
0

pdf̄

2p
sin~f̄ !E

0

2p dū

2pE0

` dk̄

2p
k̄2

3FG2;cc
, ~ k̄,f̄,v2vQ!

ukres
n 2 k̄res

n21u2
nB~vQ!

1
G2;cc

, ~ k̄,f̄,v1vQ!

ukres
n 2 k̄res

n11u2
@11nB~vQ!#G .

~12!

In the following, it will be convenient to denote

Gcc
, ~n,f,v!5E

0

` dk̄

2p
k̄2G2;cc

, ~ k̄,f,v!,

~13!

F~n,f;n61,f̄ !5E
0

2p dū

2p

1

ukres
n 2 k̄res

n61u2
,

whereF(n,f;n61,f̄) can be evaluated analytically with th
use of the formula36

E
0

x dx̄

a1c sin~ x̄!
5arctanS c1a tg~x/2!

Aa22c2 D 1C.

We can take advantage of the fact that expression~12! is k
independent, and integrate Eqs.~11! over k, as in studies
concerning metals.31,33,34 This allows us to close the firs
equation in Eq.~11! in terms of Gcc

, (n,f,v), since the
propagatorsuG0;cc

r (k,v)u2 become integrated independent
from thek-independentS2;cc,s

, (n,f,v). At the same level of
approximations, the productuG0;cc

r (k,v)u2 G0;vv
, (k,v

22v0) can be integrated overk ~see Appendix C!.
Substitution of terms~12!, ~C1!, and ~C2! into Eqs.~11!

gives the quantum kinetic equation forGcc
, in the form
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Gcc
, ~n,f,v!5

2kres
n

\2 Im Scc,s
r ~n,v!

S uS f ;cv~f!u2A~n,v!mcvdn01
mc

2
M0

2E
0

pdf̄

2p
sin~f̄ !$F~n,f;n21,f̄ !

3Gcc
, ~n21,f̄,v2vQ!nB~vQ!1F~n,f;n11,f̄ !Gcc

, ~n11,f̄,v1vQ!@11nB~vQ!#%D . ~14!
a
q
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s
n

o
ic
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e

y
xi-
e

gral
Here mcv5mcmv /(mc1mv) is the effective electron-hole
mass, and the equation forGvv

. has an analogous form.
These quantum kinetic equations describe the two-be

coherent control for a moderately large scattering. In E
~14!, the broadening of the effective spectral functi
A(n,v), further modified by the v-dependent
Im S0;cc,s

r (n,v), describes the effect of the electron-phot
interaction on the carrier generation. Consequently, the tr

port vertex with populationsGcc
, (n61,f̄,v6vQ) is also

broadened, and further modified by ImS0;cc,s
r (n,v). These

v-dependent changes in the transport equations repre
quasiparticle corrections, which change the relaxatio
rates,37 and in transient situations have the character
memory effects. They reflect time-dependent quasipart
formation, observed in recent one-beam excitat
experiments.20,21Two-beam coherent control could allow th
observation of these phenomena in the induced current.36
.
c

q.
m
s.

s-

ent

f
le
n

C. Boltzmann equation

For weak scattering, thev dependence of the self-energ
in Eq. ~10! can be neglected by using the Markov appro
mationScc,s

. (n,v5Eres
n /\). In this situation we can also us

Ac'Ac
0 , which leads toScc,s

. in thenon-self-consistent Born
form. Then thek integral in Eq.~10! is

E
0

` dk̄

2p
k̄2Ac~ k̄,Eres

n /\6vQ!'
1

2 S 2mc

\2 D 3/2

AEres
n61. ~15!

The propagatorsS0;aa,s
r ,a can be constructed fromS0;aa,s

. as
in Eq. ~A6!.

If the self-energy in Eq.~15! is applied in Eq.~14!, then
during their integration overv the prefactor splits from the
rest of the terms and the effective spectral functionA inte-
grates to 1. As a result, we obtain the steady-state inte
Boltzmann equation30 ~IBE! for the two-beam optical exci-
tation,
f cc~n,f!5
2kres

n to~n!

\3 S uS f ;cv~f!u2mcv dn01
mc

2
M0

2E
0

pdf̄

2p
sin~f̄ !$F~n,f;n21,f̄ ! f cc~n21,f̄ !nB~vQ!

1F~n,f;n11,f̄ ! f cc~n11,f̄ !@11nB~vQ!#% D , ~16!
be-
the

ady

ary
Eq.
case
.

where the distribution function is

f cc~n,f!5E d\v

2p
Gcc

, ~n,f,v!, ~17!

andto(n)52\/2 ImScc,s
r (n) is the particle relaxation time

The relaxation of electron momenta is described by the lo
transport~momentum relaxation! time38 tp'3to , resulting
from to(n) by inclusion of the vertex correction terms in E
~16!.31 To obtain a physically consistent solution of Eq.~16!,
al

it is necessary to add the radiative transfer of carriers
tween the bands. The induced current is not sensitive to
form of this additional term, since mostly levels with smalln
are affected, where the total momentum of carriers is alre
very small due to relaxation.

We can similarly derive a time-dependent IBE, necess
for studies of pulsed excitations. It can be obtained from
~7!, using approximations analogous to the steady-state
in the time domain,30 or by a logical generalization of Eq
~16!. Its form is as follows:
f cc~n,f,T!5
2kres

n

\3 E
0

T

dT8e2(T2T8)/to(n)S uS f ;cv~f,T8!u2mcvdn01
mc

2
M0

2E
0

pdf̄

2p
sin~f̄ !$F~n,f;n21,f̄ !

3 f cc~n21,f̄,T8!nB~vQ!1F~n,f;n11,f̄ ! f cc~n11,f̄,T8!@11nB~vQ!#% D , ~18!
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and it coincides with the steady-state equation~16! for long
excitation pulses. Here we use Eqs.~17! and ~18! to present
the main features in the injection and relaxation of the
electron population with nonzero average momentum, e
though the conditions of weak scattering are not fully sa
fied in GaAs.

D. Induced current density

The solutions of Eqs.~16!–~18! can be used to calculat
the optically induced current densityJ. The injection~scat-
tering! term contributes toJ from the leveln50 (nÞ0).
The total current density is formed by the electron and h
partsJ5Jcc1Jvv , resulting from the individual bands. Fo
laser beams polarized in thex direction, the current density
Jcc

x is

Jcc
x 52eE d3k

~2p!3E d\v

2p
vcc

x ~k!Gcc
, ~k,v!

'
e

2 (
n

vcc~kres
n !E

0

pdf

2p
sin~2f! f cc~n,f!, ~19!

andJvv
x is analogous. In the second expression, we have u

Gcc
, ' f cc/2!, and sin(2f)/2 combines thef dependence o

the momentum integral@sin (f)# and thex component of the
velocity @cos (f)#.

In the generation termf cc(n50,f), the mixed part from
the squared field self-energyuS f ;cv(f,T)u2 contributes toJ.
In steady state it is equal to

uS f ;cv~f!umix
2 5

2e3

c3
A2v0

x ~Av0

x !2cos~u2v0
22uv0

!

3uvcv
x ~f!u2

vcc
x ~f!2vvv

x ~f!

\v0
, ~20!

where all the velocities are taken atkres
0 . The approximate

cosine dependence of the intraband matrix eleme
vcc,vv

x (f)'6cos(f) builds animbalancein the generation
of carriers with opposite momenta. The direction of the
current densityJ is controlled by the phasesu2v0

anduv0
.

The angular dependence of the generated populatio
also determined by the interband velocity elementsvcv

x (f).
We use their approximateab initio values for GaAs, calcu-
lated in the absence of spin-orbit interaction, and cons
the lowest conduction band, one light-hole band, and
degenerate heavy-hole bands. The square of the inter
velocity elementuvcv

x (f)u2 summed over the two hh bands
approximatelyu independent, as is the valueuvcv

x (f)u2 for
the single light hole band~indicated by our notation!. In the
parabolic approximation these two then have the forms

uvcv; l ight
x ~f!u2'v l

2 cos2~f!, uvcv;heavy
x ~f!u2'vh

2 sin2~f!,
~21!

wherev l andvh are constant for a given light energy. Ther
fore, the conduction-band photogenerated electron distr
tion in the Brillouin zone has a maximum along~perpendicu-
lar to! the polarization direction for generation from lh~hh!
band, which is distorted by the mixed term~20!. This sym-
t
n
-

e

ed

ts

t

is

er
o
nd

u-

metry has already been recognized in one-pho
excitation,39 where a mixture of the light- and heavy-ho
bands close to theG point was considered. In Sec. V w
show that the momentum~current! relaxation has a differen
character for these two cases. In Appendix D the carrier g
eration rates obtained here are compared with those fo
earlier from a Fermi’s golden rule calculation.4

V. NUMERICAL RESULTS AND DISCUSSIONS

Here we solve Eqs.~16! and~18! and calculate the carrie
distribution in the individual levels and the related curren
Results for only the conduction band are presented, since
valence band has similar distributions and contributes les
the total current. Generation of radiation in the THz regi
by these transient currents is also briefly described.

A. Electron distribution

We take the energy gap to beEg51.5 eV, and consider
excitation at 2\v052.1 eV. At this energy, theab initio
results forv l andvh in Eq. ~21! are very close to the intra
band speedvcc(k)5\k/mc in the parabolic approximation
Therefore, we approximate them at the excitation pointkres

0

by the valuevcc(kres
0 )'1.7 nm/fs. For the intensities at 2v0

and v0 we take the experimentally realistic values6 of I 2v0

510 kW/cm2 and I v0
5100 MW/cm2, respectively.

In Fig. 3 we present the quasi-steady-state electron di
bution in the conduction band, as calculated from Eq.~16!.
In the left ~right! caption we show the results for excitatio
from the lh ~hh! bands. The full line corresponds to the e
citation leveln50, dashed~dash-dotted! lines are for levels
with the one- and two-phonon emissionn521 and 22,
~absorption, n511 and 12!. The temperature isT
5300 K, so that the phonon absorption is relatively hig
and consequently the distributions are nonzero for all ang
f. The photogenerated electron distributions for the lh a
hh excitations have a nonzero mean momentum, but t
forms are very different from the Fermi sea in metals, wh
shifted by a dc electric field.17 Since the two distributions are

FIG. 3. The steady-state electron distribution in the conduct
band, f cc(n,f), for lh/hh excitation atT5300 K. The full line is
for level n50, and dashed~dash-dotted! lines correspond to nega
tive ~positive! n.
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also qualitatively different one from another, they have d
ferent momentum relaxation timestp .

The different shapes of the shifted distributions~along
and perpendicular to thex axis for the lh/hh excitation! are
determined by the elementsvcv; l ight

x (f), vcv;heavy
x (f).

The relaxation of thekx component of the wave vectork has
a 2D-like character for electrons generated from lh exc
tion, sincekx is decreased by scattering in anyf-direction.
This relaxation is slower for hh excitation than for lh excit
tion, since in the hh case the momentum relaxes in a o
dimensional-like form; i.e.,kx relaxes because there is mo
available phase space for scattering in the direction tow
f590 ° than away from it, while scattering in theu direc-
tion does not lead to relaxation ofkx . The large available
phase space for hh excitation also increases the total inje
current in this case. Since the distributions for the two ex
tations are complementary, their sum resembles the cha
in distribution that would characterize a metal in a dc bi
Relaxation of anisotropy in distributions with zero mean m
mentum was recently also studied in the presence of car
carrier scattering.40,37

B. Photoinduced current

Next from Eqs.~18! and ~19! we calculate the time de
pendent current densities for a pulse excitation. Fie

FIG. 4. The current densitiesJcc for lh excitation atT550 K
~upper diagram! andT5300 K ~lower diagram!. The solid line is
for n50, and dashed lines correspond to negativen. Relaxation at
higher temperatures is faster, which gives lower saturated value
the current. The thin vertical dot-dashed line shows the center o
light pulse. The peaks of the individual contributions, shown by
thin dotted line, are shifted with respect to the line.
-

-

e-

rd

ed
i-
ge
.
-
r-

s

A2v0
(t) andAv0

(t), with peak intensities as before, are a

sumed to lead to an effective fieldAe f f with a Gaussian

envelope function e2(t2t0)2/2sE
2
, t05400 fs, and sE

5150 fs. This is typical of experimental conditions, b
cause the pulseA2v0

(t) is usually produced fromAv0
(t) by

second-harmonic generation in a doubling crystal, leading
a pulse width ofA2v0

(t) that is half that ofAv0
(t).

In Fig. 4 we show the current densitiesJcc(n) from the
individual levels for the lh excitation. In the upper diagra
the solution at the low temperatureT550 K shows a rela-
tively large shift of maxima for the lower levels, plotted b
the thin dotted line, with respect to the center of the la
pulse, represented by the vertical thin dot-dashed line. In
lower diagram we show the corresponding results forT
5300 K. Here the values are smaller and the relaxation
faster, due to stimulated phonon processes. In Fig. 5
same is presented for the hh excitation. Here the cur
contributions are several times larger and they suffe
smaller decrease as we move to levels with smallern. These
levels are also more shifted, especially at the lower temp
tureT550 K. For the assumed Gaussian pulse, it is poss
to observe a very small overshoot in the relaxation tail of
current, i.e., levels with smallern give larger current than
those with largern. These effects illustrate the slower mo
mentum relaxation of electrons excited from the hh band

In Fig. 6 the total current density from the conductio
bandJcc is shown for lh excitation. The saturation and r
laxation time ist lh'70 (50) fs forT550 (300) K, which

of
e

e

FIG. 5. The same as in Fig. 4 but for the hh excitation. At bo
temperatures, the relaxation of current is slower than in Fig. 4
the peaks are more shifted.
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5388 PRB 61P. KRÁL AND J. E. SIPE
becomes reflected in the different shifts of these two so
tions with respect to the light pulse~vertical dot-dashed line!.
As in the previous pictures, the peak value for the curren
T550 K is larger than that atT5300 K. Figure 7 shows
the results forJcc in the presence of hh excitation. Here th
relaxation timesthh are slightly larger than for the lh excita
tion at both temperatures, due to the symmetry of the dis
bution, and the current densities are about three times la

In Fig. 8 the steady-state current densityJcc is shown as a
function of temperature. The solid~dashed! line corresponds
to the hh ~lh! excitation. At low temperatures the curre
densities saturate due to spontaneous phonon emission
cesses. At high temperatures they decrease, because s
lated phonon processes shorten the momentum relaxa
time.

C. Generation of THz radiation

Current pulses in the range of tens of femtoseconds g
erate electromagnetic radiation in the THz region, origin
ing from the fact that electrons are accelerated during
injection and relaxation. The field typically varies as the d
rivative of the current densityEemiss(t)' J̇(t). Here we are
concerned with the THz radiation generated by the injec
currents, and not that generated by displacement currents
persist even at sub-band-gap excitation.41

FIG. 6. The total current densityJcc for the lh excitation. The
solid ~dashed! line corresponds to the temperatureT
550 (300) K.

FIG. 7. The total current densityJcc for the hh excitation. The
saturation and relaxation rates are longer than that found fo
excitation, and the peaks are more shifted.
-
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In Fig. 9 we present the derivativeJ̇cc(t) for the real hh
excitation in our system at the temperatureT5300 K. We
take fieldsA2v0

(t) andAv0
(t) with the same peak intensitie

used above, but given by a Gaussian envelope function w
t05150 fs andsE520 fs. This short excitation leads to

large asymmetry ofJ̇cc(t); the sharp increase is produced b
the pulse and the slow decay is due to relaxation by phon
In the inset we show the normalized absolute values of

Fourier components forJ̇cc(t). The full ~dashed! line corre-
sponds tosE520 fs (sE5100 fs); both give two peaks
symmetric aroundv rad50. If the pulse length is comparabl
to or longer than the momentum relaxation timetp , as in the
case ofsE5100 fs, the field envelope functions determin
the low frequency spectrum. For shorter pulses, as in the
of sE520 fs, higher-frequency components of the spectr
appear, and at the long-wavelength limit the spectrum
mostly determined by the relaxation of electrons on L
phonons. The THz radiation could reflect nonclassical p
nomena in the current, related to polaron formation.21,36

lh

FIG. 8. The steady-state current densityJcc as a function of
temperature. The solid~dashed! line corresponds to the excitatio
from heavy~light! holes. Both decay with temperature at approp
ate momentum relaxation times.

FIG. 9. The derivativeJ̇cc(t) for hh excitation by two beam
pulses of a Gaussian envelope of a widthsE520 fs and at a tem-
peratureT5300 K. In the inset the spectrum of this derivative
shown. The full~dashed! line corresponds to the pulse widthsE

520 fs (sE5100 fs).
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VI. CONCLUSION

We have theoretically investigated the two-laser-beam
jection of dc current in bulk semiconductors. Thisquantum
interference injectionand the carrier relaxation was de
scribed by nonequilibrium Green functions. The transiti
amplitudes for the one- and two-photon transitions at 2v0
and v0 add coherently and form an effective fieldAe f f(k),
which generates carriers with different rates at wave vec
6k and produces a dc current. In our diagrammatic appro
mation, inelastic scattering by LO phonons does not alter
simultaneous two-beam injection, but it is active in redis
bution of the carrier’s momenta and the current relaxatio

We have derived quantum kinetic equations, in the sec
order in the field self-energyS f ;cv(k) or equivalently
Ae f f(k). Here the equations have been further simplified
the Boltzmann limit, and applied in steady-state and pu
excitations of GaAs in the presence of LO-phonon scatter
Different electron distributions are photogenerated in
conduction band for excitation from light- and heavy-ho
bands. At all temperatures, the total induced current is st
ger and it relaxes slower for hh excitation than for lh exci
tion. Generation of THz radiation by the injected current
also briefly discussed.

It can be expected that other excitation configurations
lasers beams, or materials with a noncentrosymmetric la
t

ur

s

n

-

rs
i-
is
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d

o
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g.
e

n-
-

r
ce

structure, will open further possibilities for direct current i
jection, with new potential applications.42 Recently, transport
of atoms in carbon nanotubes by the two-beam coherent
trol was suggested.43
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APPENDIX A

We use electron Green functions in a matrix form. In re
times and on the quasimomentum diagonal, the causal fu
tions are defined by16,23,25

Gab
t ~k,t1 ,t2!52

i

\
^Taa,k~ t1!ab,k

† ~ t2!&, a,b5c,v,

~A1!

and the temperature and boson functions can be introdu
analogously. The correlation functionsGab

. andGab
, are re-

lated toGab
t as follows:
iGab
t ~k,t1 ,t2!5Gab

. ~k,t1 ,t2!5^aa,k~ t1!ab,k
† ~ t2!&/\, t1.t2 ,

~A2!
2 i Gab

t ~k,t1 ,t2!5Gab
, ~k,t1 ,t2!5^ab,k

† ~ t2!aa,k~ t1!&/\, t1,t2 .
tion

nd
t-

e
in
The retarded and advanced propagatorsGab
r ,a are defined by

Gab
r ,a~k,t1 ,t2!57 iu~6t17t2!@Gab

. ~k,t1 ,t2!

1Gab
, ~k,t1 ,t2!#, ~A3!

where theu function isu(t)50 and 1 ast,0 and.0.
In the steady state the Green functions depend only on

difference of time coordinatesG(k,t5t12t2). Then the in-
traband correlation functions can be expressed after a Fo
transform overt as11

Gaa
, ~k,v!5nF~v!Aaa~k,v!,

Gaa
. ~k,v!5@12nF~v!#Aaa~k,v!, ~A4!

where in equilibrium nF is the Fermi-Dirac distribution
nF(v)51/@exp(\v/kT)11#, and the spectral function i
defined by the equilibrium correlators

Aaa~k,v!522 ImGaa
r ~k,v!5Gaa

. ~k,v!1Gaa
, ~k,v!.

~A5!

This relates back to the propagator through the Hilbert tra
form

Gaa
r ,a~k,v!5E

2`

` dv̄

2p

Aaa~k,v̄ !

v2v̄6 id
. ~A6!
he

ier

s-

APPENDIX B

In this appendix we consider steady-state current injec
and perform a term by term linearization of Eqs.~7! in terms
of Sf .31 This gives the first-order equation

G1
,5G0

r SfG0
,1G0

,SfG0
a1G0

r S1s
r G0

,

1G0
,S1s

a G0
a1G0

r S1s
, G0

a , ~B1!

where the common argumentsj5(k,v) are not written. In
Eq. ~B1!, the arguments in theG0 elements that follow
S f (1s);cv and S f (1s);vc are shifted31 by 22j05(0,22v0)
and 2j0, respectively. We can approximately takeG0;cc

,

5G1;cc
, 5G0;vv

. 5G1;vv
. 50, while the first-order interband

function G1;cv
, fulfills the equation

G1;cv
, ~j!5G0;cc

r ~j!@S f ;cv~k!1S1s;cv
r ~j!#G0;vv

, ~j22j0!

1G0;cc
r ~j!S1s;cv

, ~j!G0;vv
a ~j22j0!, ~B2!

and the expressions forG1;vc
, , G1;cv

. , andG1;vc
. are analo-

gous. Equation~B2! describes the electron-hole density a
the related polarization.13,44 In the absence of interband sca
tering, expression~8! gives S1s;cv

, (k,v)5Mcc(q̄)G1;cv
, (k

2q̄,v2v̄)D,(q̄,v̄)M vv(q̄). For steady-state excitation, th
two Green functions for conduction and valence bands
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each of the vertex correction terms in Eq.~B2!, with S1;cv
, ,

cannot both be in resonance, if the energy\v is out of the
light excited region ~phonon emission and absorption!.
Therefore, these vertex correction terms should be less
portant in the steady state.

The termG2
, results from expandingG in Eq. ~7! to sec-

ond order inSf :

G2
,52G0

r ~Sf
r1S1s

r !G0
,~Sf

a1S1s
a !G0

a12G0
r ~Sf

r1S1s
r !

3G0
r S1s

, G0
a12G0

r S1s
, G0

a~Sf
a1S1s

a !G0
a

12@G0
r ~Sf

r1S1s
r !#2G0

,12G0
,@~Sf

a1S1s
a !G0

a#2

1G0
r S2s

r G0
,1G0

,S2s
a G0

a1G0
r S2s

, G0
a . ~B3!

The band diagonal elements here describe the injected i
band population. If all terms associated withS1s are ne-
glected, as discussed above, then Eq.~B3! can be solved
independently from Eq.~B1!. This gives our starting set o
kinetic equations~11!. It is worth noting that other terms ca
contribute to the current. They result from the mixed cor
lation functionGi j

, , perturbed to a second order in the exte
nal field, and give ashift current, studied in our next work.45
n
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APPENDIX C

Let us approximate Eq.~11!, and start with thek integra-
tion in the square of propagators.31,33We use the substitution
E5\2k2/2mc , along with the fact that the approximate
self-energyScc;s

r (n,v) is no longer a function ofE. Then the
E integration can be performed in the complex plane@the
closed path around the poleE5\v2Scc;s

r (n,v)], with the
approximate result31

E
0

` dk

2p
k2uG0;cc

r ~k,v!u2'
2kres

n

\2 Im Scc,s
r ~n,v!

mc

2
. ~C1!

Here theE integration is approximated by prolongation to
2`, and the square root, resulting from the change ok
variable, is taken at the free pole\v5\2(kres

n )2/2mc . More
general results for the integral can be also obtained.

The k integral in the excitation~first! term on the right
side in Eq. ~11! can be done similarly. It is necessary
resolve the spectral function in the valence band from
correlatorG0;vv

, 5A0;vv @nF51; see Eq.~A4!# into a differ-
ence of two propagatorsA0;vv5G0;vv

. 1G0;vv
, 5 i\(G0;vv

r

2G0;vv
a ) @see Eq.~A3!#. These propagators in Eq.~9! are

multiplied by uG0;cc
r u2. These terms produce two integral

done as in Eq.~C1!, which can be collected to the following
form:
E
0

` dk

2p
k2uG0;cc

r ~k,v!u2G0;vv
, ~k,v22v0!'

2kres
n A~n,v!dn0

2\2 Im Scc,s
r ~n,v!

mcmv

mc1mv
,

A~n,v!522

mc

mc1mv
Im Scc,s

r ~n,v!1
mv

mc1mv
Im Svv,s

r ~n,v!

~\v2D!21S mc

mc1mv
Im Scc,s

r ~n,v!1
mv

mc1mv
Im Svv,s

r ~n,v! D 2 . ~C2!

D5
mc

mc1mv
ReScc,s

r ~n,v!1
mv

mc1mv
@2\v02Egap1ReSvv,s

r ~n,v!#.
ady

dif-
to
Here the particular mass prefactor inD corresponds to the
choice of the value\v50 at the bottom of the conductio
band, but the results are independent of this choice. It is g
to stress that the above approximations of the transport e
tions ~11! are consistent with those implied in th
k-dependentS0;cc,s

. (n,v).

APPENDIX D

Here we compare the generation term from the IBE in E
~16! with an analogous term obtained by the Fermi’s gold
rule.4 To this end it is more direct to use the differenti
version of the transport equation11 for Gcc

, . It has a genera-
tion term, in the adiabatic approximation and second orde
S f ;cv , of the form@Eq. ~14.18! from Ref. 16 and Eq.~B2! in
this work#
d
a-

.
n

in

S ]Gcc
, ~k,v,T!

]T D
gen

5
1

\
uS f ;cv~k!u2A0;cc~k,v!

3A0;vv~k,v22v0!. ~D1!

This expression is equal to the generation term in the ste
state G2;cc

, (k,v) from Eq. ~11! multiplied by 1/2! and
22 ImScc,s

r (k,v)/\. Integration of Eq.~D1! overk andv,
using approximations in the text, yields the first~generation!
term in Eq. ~18!, differentiated over timeT at T50. This
equivalence of the generation terms in the integral and
ferential versions of the transport equations allows us
compare the earlier results4 with expression~D1!, instead of
Eq. ~18!.

The time derivative, atT50, of the generation part for the
current density in the conduction band is~prefactor 2 for
spins!
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S ]Jcc
x ~T!

]T D
T50

52eE d\v

2p E d3k

~2p!3
vcc

x ~k!

3S ]Gcc
, ~k,v,T!

]T D
gen

'2eE d3k

~2p!3

vcc
x ~k!uS f ;cv~k!u2

\2

32pd@vcv~k!22v0#, ~D2!
R.

.

M

m

L

s

-

n

where Eq.~D1! was used, thev integration of the free spec
tral functions was performed, and the factorvcv(k)5«kc

/\

2«kc
/\ was introduced~isotropic bands!. The explicit form

of the squareuS f ;cv(k)u2 from Eq. ~6! can be substituted in
Eq. ~D2!. Further, the vector potential must be written
terms of the electric field, and only two parabolic bands co
sidered. Then the different parts of Eq.~D2! agree with the
one-photon, two-photon, and interference terms found
Atanasovet al.,4 when their expressions are subjected to
approximations made here.
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