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Abstract

We present quantum schemes that can code/decode information by optical adiabatic passage processes. In a quantum decoder,

information encoded on N levels (quNit), with population amplitudes of M possible phases, is processed by transferring their pop-

ulation optically to (predominantly) one of L final levels. In this two-photon adiabatic passage, N intermediate levels are resonantly

coupled �one-to-one� to N initial states and �one-to-all� to L final states. A quantum encoder works in the opposite way. We discuss

practical implementation of the suggested schemes in manifolds of vibrational states of the Na2 dimer.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

Practical realization of many challenging problems in

quantum computation [1], quantum communication [2]

and use of quantum devices [3,4] is limited by decoher-

ence effects [5]. Various approaches have been suggested

to overcome this problem, like using of robust codes
[6,7] or decay-free states [8]. It is thus of interest to

search systems that can perform general unitary opera-

tions [9] and convert quantum information between dif-

ferent codes.

In this work, we present new schemes that can ef-

ficiently code and decode quantum information, when

applied in molecular systems. They are based on

robust two-photon adiabatic passage techniques
[10–12], which are generalized to include many initial,

intermediate and final states. This step allows selective

addressing of many final states, according to a priori

unknown initial superposition states. Analogous mul-

ti-level schemes can be used in preparation of vibra-
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tional wave packets in molecular dimers [13], in

chiral purification of �racemic� mixtures of enantiomers

[14] or in control of isomerization of Jahn–Teller mol-

ecules [15].
2. Quantum decoder

In the quantum decoder, which is shown in Fig. 1, in-

formation is encoded on N initial energy levels, jiæA
(i=1,. . .,N), with M distinct phases of their population

amplitudes, that form �discrete� quNit states [16]. The

initial jiæA states are resonantly coupled one-to-one to

N intermediate jiæB states, by a �pump� pulse of XAB
ii

Rabi frequencies. These states are in turn resonantly
coupled one-to-all to a (larger) set of final jkæC states

(k=1�L), by a �dump� pulse of XBC
ik Rabi frequencies.

In this two-photon multi-path adiabatic passage, we

use a �counter-intuitive� pulse ordering [10–12], in

which the �dump� (D) pulse precedes the �pump� (P)

pulse. Decoding is realized by passing the population

on the N initial jiæA states to predominantly one of

the L final jkæC states.
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Fig. 1. Scheme of the quantum adiabatic de/encoder. In a quantum

decoder, the information is initially encoded in the M phases of

population amplitudes of the j1�NæA states. Its decoding is realized by

transferring all the population through the intermediate j1�NæB states

to predominantly one of the final j1�LæC states (L>N). Quantum

encoder works in the opposite way: it transfers the population from a

single j1�LæC state to all the j1�LæA states and fixes their M phases.
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The coupling is mediated by multimode electric fields

EPðDÞðtÞ ¼ Re

X
k;l

EABðBCÞ
k;l ðtÞe�ixABðBCÞ

k;l t: ð1Þ

Thus, XABðBCÞ
kl ðtÞ � lABðBCÞ

k;l EABðBCÞ
k;l ðtÞ � OABðBCÞ

k;l f PðDÞðtÞ
are the Rabi frequencies, where we use the electric-

dipole matrix-elements lABðBCÞ
k;l between the jkæA(B) and

jlæB(C) states, and 0< fP(D)(t)<1 are the common enve-

lopes of the dump and pump pulses.

The total Hamiltonian, in the rotating waves approx-

imation and neglecting off-resonance terms, is ð�h ¼ 1Þ

H ¼
X2NþL

‘¼1

x‘ j ‘ih‘ j

þ
XN
i¼1

XAB
ii ðtÞe�ixAB

i;i t j iiBhijA þ h:c:
h i

þ
XN
i¼1

XL

k¼1

XBC
ki ðtÞe

�ixBC
k;i t j kiChijB þ h:c:

h i
: ð2Þ

In the first sum, ‘ goes over all states of the system, with

energies x‘. The second term represents the one-to-one
resonant coupling of the initial states to the intermediate

states, by the pump pulse whose frequency components

are xAB
i;i � xiB � xiA . The third term represents the one-

to-all resonant coupling of the intermediate states to the

final states, by the dump pulse with frequency compo-

nents xBC
k;i � xkC � xiB . We assume that the level energies

are such that only the described couplings are resonant

and parasitic effects due to non-resonant neighboring
couplings can be neglected [13].

We expand the system wave function in the material

states as, jw(t)æ=
P

kcj(t)e
�ixktjkæ. The column vector of

slow varying coefficients c=(c1, c2,. . .) is a solution of

the matrix-Schrödinger equation _cðtÞ ¼ �iHðtÞ � cðtÞ.
The effective time-dependent Hamiltonian is
HðtÞ ¼
0 HAB 0

HABy 0 HBC

0 HBCy 0

2
64

3
75; ð3Þ

where HAB
i;j ¼ XAB

ii dij is a diagonal and HBC
ik ¼ XBC

ik a full

matrix. We can find that H(t) has 2N+L eigenvalues, of

which at most 2N are nonzero, k1,. . .,2N(t) „ 0, and the

rest L are zero, k2N+1,. . .,2N+L=0, so they correspond

to �null� states. Re-defining the basis as e�ix‘tj‘æfi j‘æ,
we can check from H Ædk=0 (k=1�L) that these states
are characterized by the time-dependent vectors,

d1 ¼ XBC
11 =X

AB
11 ; . . . ;X

BC
N1=X

AB
NN ; 0; . . . ; 0;�1; 0; . . . ; 0

� �
;

d2 ¼ XBC
12 =X

AB
11 ; . . . ;X

BC
N2=X

AB
NN ; 0; . . . ; 0; 0;�1; . . . ; 0

� �
;

..

.

dL ¼ XBC
1L =X

AB
11 ; . . . ;X

BC
NL =X

AB
NN ; 0; . . . ; 0; 0; 0; . . . ;�1

� �
:

ð4Þ
In order to simplify the analysis, we can assume,

without loss of generality [13], that XAB
11 ¼

XAB
22 ¼ . . . ¼ XAB

NN ¼ XAB. Then, the first N coefficients

in the dk(t) null states are solely determined by the dump

vectors XDk ¼ ðXBC
1k ;X

BC
2k ; . . . ;X

BC
Nk Þ. Moreover, the dk(t)

states correlate one-to-one with the j1�LæC final states.

Thus, if we manage to initially populate only one of

the dk(t) states, adiabatic following would exclusively

pass this population to a single final jkæC state, in the

end of the process, so the decoding process would be
perfect.

In reality, the initial population of the j1�NæA states

splits among the (k=1�L) dark states, according to the

squared projections, pk� jc0 ÆXDkj2, of the vector of ini-

tial coefficients c0=(c1,c2,. . .,cN) on the dump vectors

XDk. Analogous relation determines the fraction of pop-

ulation transferred through a single intermediate level

[13], by many pump Rabi frequencies. Therefore, we
can maximize the population pi, transferred to the cho-

sen (decoded) jiæC state, by using XDi�c0. At the same

time, parasitic transfers to other jkæC (k„ i) states could
be minimized if theXDk andXDi vectors are orthogonal,

XDk ÆXDi�0. The first condition is easy to meet, while
the last cannot be fully realized if N<L. This is because,
we cannot orthogonalize all the L vectors, XDk, in a
N(<L) dimensional space. Only if N=L, their compo-
nents can be chosen such that the L dark states are or-
thogonal one to another, in the form given in Eq. (4),
and the transfers to the final jkæC states are complete
and exclusive. Very good coding/decoding machines
can still be realized, unless N>L.

As an example, we can examine the transfer of num-

ber information stored inM=2 phases of the coefficients

of N equally populated initial levels jiæA. In this �binary-
phase� coding the binary number (0,0,. . .,0), i.e.,

0 Æ20+0 Æ21+ � � �+0 Æ2N=0, is represented by the ampli-

tude c1=(1,1,. . .,1) of the jiæA states, the binary number
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(1,0,. . .,0), i.e., 1 Æ20+0 Æ21+ � � �+0 Æ2N=1, by c2=(�1,

1,. . .,1), and so on. Because quantum states are known

up to an overall phase, we can encode in this manner

on N levels only 2N� 1 numbers.

As mentioned above, the decoding can be optimized

by aligning Rabi vectors XDk, which dump population
to the jkæC states, with the related ck vectors of encoded

coefficients, XDk�ck. Accordingly, the j1æC state is cou-

pled to the intermediate j1�NæB states by the vector of

Rabi amplitudes OD1=(1,1,. . .,1)=c1, the j2æC state by

OD2=(�1,1,. . .,1)=c2, and so on.

In Fig. 2, we present the quantum decoder. The

magnitudes of all the Rabi frequencies are jOijj=30/s,
where fD(P)(t)=exp[�(t�tD(P))

2/s2] and tP�tD=2s. The
system decodes each of the binary-phase stored number

by transferring the population of the initial superposi-

tion state, representing this number, to predominantly

one of the (16) final jkæC eigenstates. The degree of exclu-

sivity of the transfer is such that 5 other final states end

up with 2.78 times less population, while the remaining

10 states being considerably less populated.

We can obtain analytically the populations pk of the
final jkæC states, that are proportional to the squared

scalar products, pk� jc0 ÆXDkj2, of the encoded initial vec-

tor c0=(c1,c2,. . .,c5) with the dump Rabi vectors XDk.

For example, by encoding the first �hexagonal� level,

c0=(1,1,1,1,1), and taking into account that
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Fig. 2. The results of the quantum decoder. In the back we see the pk
(k=1�16) populations of the 2N� 1=16 final levels, transferred from

the N=5 initial states (k=22–26), shown up front. The intermediate

states (k=17–21), in the mid-region, are unpopulated. The ck ampli-

tudes of the five initial states are depicted by bars, 0.05 in height

(instead of the correct 1=
ffiffiffi
5

p
values). As we decode different binary-

phase stored numbers iB�1, the maximum (31%) of the transferred

population moves from one final level to the next. Other final levels are

at least 2.78 times less populated.
OD1=(1,1,1,1,1) and OD2=(�1,1,1,1,1), we obtain that

p1� jc0 ÆOD1j2=25 and p2� jc0 ÆOD2j2=9, so that p1/

p2= j5/3j2�2.78, as in Fig. 2. From the scalar products

c0 ÆOD1� 16, we can get all the probabilities, p1�16; five

of them are 9
25
p1 and 10 are 1

25
p1. Thus, from the normal-

ization factor n=1+5(9/25)+10(1/25)=3.2, we obtain
p1=1/n=0.3125, determining the populations pk in all

the cases.

Let us now generalize the decoding devices. We can

increase the density of coding [17], by using the initial

�discrete� quNit states, with amplitudes of M different

phases of the exp(i2pj/M) roots of the identity. There-

fore, a system with N initial levels and information

stored in M possible phases can be prepared in MN�1

states and transferred to the same number of final levels.

In Tables 1 and 2, we present for selected systems the

maximal population pmax and the ratio r=pmax/pnext of

the maximal and next to maximal populations on the fi-

nal states. We have calculated them as in Fig. 2, by nu-

merically enumerating all the possible states, and

confirming the results by dynamical simulations. The ra-

tio r, which determines the decoding selectivity, can be
considered to be good if r>2, that is for systems above

or on the diagonal in Tables 1 and 2, given by N=6 and

M=4. Clearly the decoding is better the closer the num-

ber of the N initial/intermediate and MN�1 final states is,

i.e. the smaller N and M are. The efficiency of en/decod-

ing in these systems could approach that in standard

quantum gates [1], if the pulses are tailored to the proc-

essed quantum information.
Since relaxation is neglected, the (unitary) evolution

is invertible. Thus the population can be transferred

back by the same set of pulses using a time-reversed

dump–pump pulse sequence. In practice, we could de-

tect the final decoded state by monitoring its fluores-

cence to some lower lying state, but after the

measurement the coherence is largely lost. Of a large

practical interest is the question, whether we can use
Table 1

The (maximal) population pmax of the final decoded state

pmax N=2 N=3 N=4 N=5 N=6

M=2 1 0.75 0.5 0.313 0.188

M=3 0.666 0.333 0.148 0.062 0.025

M=4 0.5 0.188 0.063 0.020 0.006

Here, N is the number of levels and M the number of phases used.

Table 2

The ratio r=pmax/pnext of the maximal and next to maximal popula-

tions of the final decoded states

r N=2 N=3 N=4 N=5 N=6

M=2 1 9 4 2.78 2.25

M=3 4 3 2.29 1.92 1.71

M=4 2 1.8 1.6 1.47 1.38
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the inverted pulse sequence for encoding numbers into

the phases, by starting out just with a single populated

�hexadecimal� level.
3. Quantum encoder

In Fig. 3, we display the results of this quantum en-

coding. In each run, we initially populate one of the

(16) �hexadecimal� jkæC levels, shown in Fig. 2, and

evolve the system by the time reversed pulse sequence.

In the front of Fig. 3, we see the binary-phase coded am-

plitudes of the (5) jiæA levels. In the back, we show pop-

ulations left on the �hexadecimal� levels. In contrast to
the quantum converter scheme, the coding here is per-

fect, since we obtain the correct phases of the jiæA states.

However the transfer is far from complete, since about

50% of the population is left on the initial �hexadecimal�
level and 15% is scattered to other �hexadecimal� levels.
This transfer from many to fewer levels is hampered

by �bottle-necks�, with a portion of the population being

channeled back to the original states, as discussed be-
low. The transfer could be increased to [1] �100%, if

we use different pulses [13], since the 16 levels are or-

thogonal. But we might not be able to keep them the

same for all the situations.

As mentioned above, when N<L, the L null states

can not be made orthogonal one to another, in the form

shown in Eq. (4). Nevertheless, it is still possible to have
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Fig. 3. The results of the quantum encoder, depicted as in Fig. 2. The

correctly coded binary-phase amplitudes ck of the N=5 final levels are

shown in front (in true height). The populations pk left on the initial 16

states are shown in the back. In each case about 50% of the initial

�hexadecimal� population is transferred: 31% are transferred to the

correctly binary-phase coded levels and 19% goes to other states.
N of these dark states linearly independent in the sub-

space of the first N coefficients. We can thus combine,

and orthogonalize, the L dark states in such a way, that

N of the new states would have nonzero first N coeffi-

cients, while L�N would have them zero,

DlðtÞ ¼
X
j

aljdjðtÞ; ðDl¼ðNþ1Þ�LÞ1�2N ¼ 0: ð5Þ

We thus end with N null states, for which population
transfer is complete, called �mixed null states� (MNS),

and L�N null states, called �initial null states� (INS)

[13], for which no population transfer is possible, since

they do not couple to the j1�NæA (final) states.

We illustrate this behavior in a four-level system, with

levels j1æ and j2æ coupled to level j3æ by the pump pulse

XP=(X13,X23)� (1,1), where we assume X13=X23, and

level j3æ coupled to level j4æ by the dump pulse X34.
From Eq. (4), we obtain the two null states

d1=(�1,0,0,X13/X34,) and d2=(0,�1,0,X23/X34). These

states can be combined to form the MNS, d1+d2=

(�1,�1,0,(X13+X23)/X34), and the INS, d1�d2=

(�1,1,0,0). Likewise, the initially populated state j1æ
can be written as j1æ=0.5jSæ+0.5jAæ, where jSæ= j1æ+ j2æ
parallel and jAæ= j1æ�j2æ is orthogonal to XP. As a re-

sult of the action of the XP and X34 pulses, the jSæ state,
initially correlated to the MNS, becomes depopulated

(p4=0.5), while the population of the jAæ state,

pA=0.5, correlated to the INS, remains intact.

This system can be extended in a chain-like manner to

the case in which levels j1æ, j2æ, j3æ are coupled to levels

j4æ, j5æ by the pump pulses X14=X24=X25=X35, with

levels j4æ and j5æ coupled to j6æ and j7æ by the dump

pulse X46=X57. If any of the j1æ�j3æ states is initially
populated, 2/3 of the population is transferred and 1/3

remains intact. This can be seen by resolving the initially

populated level as, j2æ=(j2æ�j1æ�j3æ)+ j1æ+ j3æ. From
Eq. (4), we find that one MNS correlates level j1æ to

j6æ, the other correlates level j3æ to j7æ, while the INS

is always correlated to j2æ�j1æ�j3æ. By following this

chain of �frustrated� transfers, we obtain that the total

population transferred in each case is 1/2, 2/3, 3/4, ...,
i.e., the ratio of the number of intermediate levels and

the number of initial levels. This �quantum reflection

law� is rather general, as we show below.

We can examine analogously the MNS and INS

states in Fig. 3. We initially consider only the j1�4æC
states, with j1æC initially populated. Their coupling vec-

tors are c1=(1,1,1,1,1), c2=(�1,1,1,1,1), c3=(1,�1,1,1,1)

and c4=(�1,�1,1,1,1). Then, c4 is linearly dependent on
the other three vectors, c4=c2+c3�c1, and the reflected

populations are p1� 4=1/16. If we wish to encode the

vector c5=(1,1,�1,1,1), instead of c4, the c2,3,5 vectors

would be linearly independent on c1. Therefore, no

INS correlating to the j1æC state can be formed, and

the population is fully transferred. When we also add
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the j8æC state, with c8=(�1,�1,�1,1,1)=c2+c3+c5
�2c1, the INS correlates more with the j1æC state and

the reflected populations are p2=p3=p5=p8=p1/4. By

adding more and more states, we finally match Fig. 3,

where all these cases interfere and give a large reflected

population, mostly left on the j1æC state.
We can find the probability Ptran of transfer from a

single (decoded) level to all the (encoded) levels in gener-

al systems. Then, among the MN� 1 null states, N are

MNS and MN� 1�N are INS. In accordance with the

above quantum reflection law, we might expect that

Ptran=N/MN� 1. Dynamical simulations fully confirm

this fact. Surprisingly, these values are identical with

those in Table 1, i.e. Ptran=pmax. The same holds for
the probability of transfer to the �incorrectly decoded�
levels and back; in the last case, we need to project the

transferred population amplitudes on the initially encod-

ed amplitudes. These adiabatically driven systems thus

behave as �passive� multi-channel elements, with the

same transfer probabilities in both directions.
4. Practical realization

We can apply the above de/coding schemes in mani-

folds of molecular vibrational states, such as those

found in the Na2 dimer [13]. The initial vibrational wave

packet, jWð0Þi ¼
PM

v¼1c
0
v jX

1Rþ
g ; vi, is sitting on the

ground electronic state X1Rþ
g of the Na2 molecule [18],

where c0v ¼ �1 are chosen according to the encoded
number. It could be prepared in simpler multi-level ad-

iabatic schemes [13]. The jX1Rþ
g ; v ¼ 1�Mi vibrational

states are coupled one-to-one to the intermediate

jA1Rþ
u ; v

0 ¼ 1�Mi vibrational states, sitting on the ex-

cited electronic state X1Rþ
g . These are then coupled

one-to-all to the jX1Rþ
g ; v ¼ ðM þ 1Þ � ðM þ LÞi vibra-

tional states. Since the vibrations are not harmonic,

the resonant transitions should not interfere one with
another, if the pulses are long enough [13].

The resonant electric field components Ev 0,v(t)e
�ixv0 ,vt,

introduced in Eq. (1), have the amplitudes EAB
v0 ;vðtÞ ¼

fDðtÞdv0;vC=lv0;v ðdv0 ;v ¼ 1; 0 if v0 ¼ v resp: v0 6¼ vÞ and

EBC
v0 ;vðtÞ ¼ f PðtÞCcev0 ;v=lv0;v, where the transition-dipole

matrix elements are [19,20] lv0 ;v � hA1Rþ
u ; v0 j

�̂ � l j X1Rþ
g ; vi. For cev0;v ¼ �1, chosen according to the

decoding structure, the adiabaticity can be satisfied for
C=30/s=1 ps�1 and fD(P)(t) as in Fig. 2. With this

choice, we obtain the above Rabi frequencies, since

XAB
v0;vðtÞ ¼ lv0 ;vE

AB
v0;vðtÞ ¼ fDðtÞCðv0 ¼ vÞ and XCD

v0 ;v ðtÞ ¼
lv0 ;vE

CD
v0;v ðtÞ ¼ f PðtÞCcev0 ;v. This shows that small mole-
cules, such as the Na2 dimer, could be used to realize

the suggested de/coding schemes.
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