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Abstract. Energy eigenstates of a quantum harmonic oscillator are displaced,
squeezed and finally damped by one- and two-photon absorption process.
Quantum fluctuations, quasi-distributions, photon-number statistics and wave-
functions are investigated for them both analytically and numerically, We
propose new methods for analytic treatment,

1. Introduction

Displaced and squeezed vacuum states of a quantum mechanical light field have
been produced in several laboratories [1]. This leads us to think over their
applications [2] or more sophisticated generalizations [3]. Nowadays, the centre of
attention concerns those states with reduced or extended quantum fluctuations in
one or the other canonical component, in such a way that the Heisenberg uncertainty
principle is preserved. A typical example is amplitude squeezed states or crescent
states [4]. Another candidate are Fock states, having zero number uncertainty and
promising hopeful applications in communications and spectroscopy. Several
methods for their production and jump-like amplification have been suggested [5]
and the first Fock state has already been observed [6]. However an experimental
observation of higher Fock states is still in the future. Our problem is what happens
with Fock states when they are displaced and squeezed?

The paper is organized as follows. In section 2 we review a few concepts
concerning a coherent and squeezed vacuum and extend them to the Fock states. We
also present quantum fluctuations for these states. In section 3 we derive quasi-
distributions, photon-number distributions and some of the wavefunctions. Section
4 is devoted to a solution of a degenerate parametric amplification process with
classical pumping for a displaced Fock state as the input. In section 5 we use the one-
parametric anti-normal quasi-distribution, found in section 4, as the input of a
single-mode system and an infinite phonon reservoir in the Markoff approximation.
From the damped antinormal characteristic function found here we derive various
features of damped states in two limits =0, v=0. In section 6 we present numerical
examples and explain their mutual connection. The conclusion completes the paper
from other points of view.

2. Coherent and squeezed states, quantum fluctuations of |, m),
A more thorough description of squeezed states can be found in Yuen’s paper [8],
from which we take a few necessary definitions and results.
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Coherent states |} result in evolution of the vacuum state |0) at the action of the
unitary operator D(a). They satisfy
ala) =aD(a)|0) =ala), 2.1)
‘where a is the anihilation operator and
D(x) =exp (xa™ —a*a). (2.2)

Similarly, squeezed states |f), (T'CSs) resulting in application of the unitary
operator S({) on |f) have the properties

biB>,=bS()IB>=BIB>, (2.3)

where
b=pa+va*,  B=pay+val, 2.4)
S()=exp(fa*?—{*a?). (2.5)

The parameters o, and af represent equivalent shift of a squeezed vacuum, as 1s
obvious from (2.10). { and {* are related to u and v by [9]

u=cosh (r), v=exp (—i6) sinh (r), {=—(r/2)exp(—ib), (2.6)
where for g and v it holds that
uf? —v)? =1. (2.7)

Displacing and squeezing operators transform a and a* according to well known
relations [9]

D(@)aD*(@)=a—a, D(@)a*D*(x)=a* —a*, (2.8)
S)aS*({)=pa+vat=b, S)a* ST()=pu*a" +v*a=>b". (2.9)

By applying (2.9) to the operator D(ff) appearing in |8), we easily obtain
S(O)|B> =S)D(B)0) = D(ap)S()I05, (2.10)

where a,, a¥ are related with §, f* through (2.4).
After these preliminaries we can define displaced and squeezed Fock states by the
formula [9]

a+m

B, m ;= S(O)D(B)|m> = S)D(B) N 10>. (2.11)

Let us investigate several moments of the field |8, m>,. We need to transform (2.4)
and its adjoint as follows

a=p*b—vb*,  a*=pb* —v¥b. 2.12)

Making use of (2.12, 8, 9), we at once obtain
(ay={a" Y*={m|D* (B)S* ({)aS)D(B)lm) = u*f—vp* =1, (2.13)
(a®>={a*D*=ai—pu*v(2m+1), (2.19)
(my={a*ay=(lul* + V*ym+ > + |, (2.15)
(A n> ={n?) — (nd? =|aou—oadv? Cm+1) + 2|uv|(m* + m+1). (2.16)
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Sub-Poissonian behaviour of the states |8, m), can be investigated from the ratio
of (2.16) to (2.15). We denote r={A%n)/(n) and remark that the inequality r <1 just
holds for a sub-Poissonian light. T'wo separate cases follow. One corresponds to the
coordinate centre located inside the ring-like ¢, (see section 3). For a large m both the
first term in (2.15) and the last term in (2.16) can dominate. The condition r < 1 then
gives the inequality 2|uv|>m <1, which limits the magnitude of v. The second case of
r<1 is when the coordinate centre lies outside ¢_,. Then both the last term in (2.15)
and the first term in (2.16) can prevail and phase conditions of the term in absolute
value in (2.16), determine the magnitude of r. We will not pursue other cases, when
more terms in (2.15) or (2.16) are comparable.

To discuss squeezing of displaced and squeezed Fock states we employ the
definition of canonical coordinate operators ¢, p with o=1,

g=H12)"*a* +a), p=i(h/2)"*(a* —a), (2.17)
and find that
2
<(A;) >=(h/2)(2"1+1)I#IVI2, (2.18)
(A%q)(A%p)=(h*|4)(2m+1)?, (2.19)

deto=0,,6,,—02, =R [4)(2m+1)2{|2 —v*|* + 4[Im (ww™)]*}, (2.20)
where [9]
0 =BG +5)— D).

We can observe that squeezing properties related to |§, m), states can be directly
deduced from those for the displaced and squeezed vacuum |f},, with the change of
h/2 to (h/2)(2m+1). From (2.18,19) it is further evident that for every m the state
|B, m)», may have, under appropriate values of 4, v, one of the quadrature variances
less than #/2, corresponding to a coherent state.

We can adopt the concept of principal squeezing [10] to |§, m), particularly. By
denoting 4, or 4, a large, or small half-axis of a noise ellipse representing squeezed
quadrature fluctuations [11], we can say that these states are principally squeezed if
Ay <(2m+1). If A, <1 they are principally squeezed below the vacuum. Here we
employ the term of squeezing whenever the half-axes are different. From (2.19) it
follows that

Ad,=Cm+1)?, (2.21)

which refers to the fact that quantum fluctuations in one quadrature increase
according to the detriment of those from the conjugate quadrature.

3. Quasi-distributions, photon-number distributions and wavefunctions

Let us briefly recapitulate some known definitions [7]. Anti-normal quasi-
distribution ¢, is related with the corresponding density operator p and the normal
quasi-distribution ¢ .,

& (@)= alploe)/n= ffﬁx(ﬂ) exp (—Ja—B|*) d?. (3.1)
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Anti-normal or normal characteristic functions are defined as

Cu(f)=Tr{pexp(—p*a)exp(fa™)}= J ¢ (@) exp (Ba*—pra)d’a,  (3.2)

C(B)=Tr{pexp(Ba*)exp(—f*a)}= j(ﬁ,v(a) exp (Ba*—p*a)d?a.  (3.3)

They are mutually related with the symmetric characteristic function as follows:

C 4 (By=exp (*/2) C(B)=exp (|B1*) C (B)- (3.4)

The corresponding quasi-distributions are the inverse Fourier transforms

¢m,d.y(“)=%fcx,d,y(ﬁ) exp (aff* —a*f) d*p. (3.5)

The photon-number normal characteristic function is simply connected to these
quantities and can be computed [7],

w1y b 182 2
C*"’“‘m{ exp\ — - C,(B)d*p. (3.6)

Characteristic functions generate photon-number distributions and various mo-
ments through

_(_l)ﬂ d)l
p(n)= o ar cy e (3.7
k 1)k (W) 3.8
W y=(=1) d;l"c ¥ (A) 1eo’ (3.8)
N\
<d(a* a)> aﬁk a( ﬁ*)l C.ﬁ’ d(ﬁ ﬂ ) r=0’ (3'9)

where A" and of denote the normal and anti-normal ordering operators respectively
[12].

To deduce ¢4 (a) for the field |f,m),, we employ techniques derived from
methods of generating functions (see [17]). We insert the factor exp (Ae™) inside the
matrix element {«|f}, found in [8] and as a result obtain (a|ﬁ m), (see Appendix),

* \M/2 o

2
_ ocg‘ 2

having for v—0 the correct limit of ¢7 for dlsplaced Fock states [7]

So that ¢, gets the following form

m(a)———lv*/zm"' <ol B12, (3.11)

1
"52(“):”—",!'“““0'2”‘ exp (—|a—a|?). (3.12)

In figure 1 we demonstrate several exaraples of the evolution of ¢% for [0,2),,
where v=0,0-5,1,2. The circle-like ¢, for the Fock state first becomes eliptic, as we
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Figure 1. Dependence of the anti-normal quasi-distributions ¢2(x) for the state |f=0,
m=2), on the squeeze parameter v. Cases (a)+(d) correspond to v=0,05,1,2.

would expect from the analogy with a squeezed vacuum. Dramatic changes follow
when the two opposite boundaries of ¢, touch themselves. That this moment arises
can be anticipated from the fact that the opposite boundaries seem not to become
thinner in the squeezing process. A transfer from an eliptic state towards a hill-like
¢, follows. This can be seen in figures 1 () and (c). These hills in ¢ , further separate
themselves and give rise to discontinuous ¢, resulting in ‘dashed-line’ states (see
(11]).

We will examine the described process by analysing (3.11). This is a product of
three terms; a power term, a complex Hermite polynomial and the wall-like term
|{alB>,|*. Hermite polynomials have all zeros on the real axis, and as can be seen from
(3.11) their argument is real (setting the condition v>0) on the imaginary axis of a.
The zeros form local minima of the term |H,,| in the complex plane a. For a very small
|v], they are all close to the point =0, as can be seen from the argument of H,,. At the
same time, for usual @ only the leading term is important in H,,. This term multiphed
by the prefactor |v/2u|™ then gives the power term in (3.12). As |v| becomes larger,
zeros of H,, move toward higher a, but the prefactor |[v/2u|™ suppresses the structured
term |H,,|, and an interference of |[v/2u|™ and |{«|B),|* gives the eliptic ¢ . Only for a
relatively large |v| the term [v/2u|™ grows up and |H,| appears. For such a large
value of |v] the strongly wall-like term [{a] ﬁ),lz suppresses all |H,| but the
surrounding of the imaginary axis, where zeros are lying. As a result we see only hills,
lying between the zeros (see figure 1 (d)).

@™ in (3.11) is formed by ¢% multiplied by some polynomials. Since ¢$- does not
exist, it is obvious that ¢7 does not exist for all m [8]. Note that the argument of the
exponential function [{a|B),|? in (3.11) can be expressed in the form of a convariance
matrix [8] or that shown in [14].

Let us consider photon-number distributions p(n) for |8, m),. p(n) is equal to the
square of the absolute value of the matrix element {n|f, m),. This can be gained in
the same way as {a|f,m), (from the matrix elements <{#j#),). The analytical
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expression for (n|f, m},, found in the Appendix, reads

n! Y2/ y \m2 [ﬁlz e min (m, n) (2/”‘,)1'/2
Clfhme= ( 'u) (ﬂ) exp( B ZuB) £ ()(n—x)'
y* \(m—iy2 — o
x I:(_E) ]Hn '((2”1’)1/2) (( 2[1"*)1/2) (3.13)

and p(n) finally results as

pm)=[<n|p,m) . (3.14)

Numerical examples for p(n) and various parameters of the field |8, mp, are described
in section 6.

An interesting result are the wavefunctions {g|B, m},. We can obtain them with
the help of the completeness relation

d2
j|a><a|—°‘=1, (3.15)
T
the integral [15]

JCXP[—Biﬁ|2+(C/2)ﬁ"2+(01/2)52+D15+DB*]dzﬁ
=\/LKexp{%[DD1B+D2(C1/2)+Df(C/2)]}, (3.16)
K=B*—CC,, ReK>0, Re[B+(Cy+C)2]>0,

the generating function for Hermite polynomials [7] and (A 2). After a straightfor-
ward calculation (qI,B m), follows

{qlB,m —
B >g ,m -

e 1
“(%) G o e-o et |

x ( AY"H,, (2 J A) (3.17)

where the coefficients are

_ [o\V? Ny 1o pu*—v* \/
Q"Q(;{) , QO_M+V’ A—‘z“ﬁ, # (ﬂ* 2AB).

f(anXaIS(C )D(P) exp (la+)10> —

In (3.17) we have used the element {g|a) from [12]
1

1/4 2
(glay= (%) exp (“%-+aQ\/2 _% || _Eaz) .

The wavefunctions {p|f, m>, or {u,|B, m), (see [8]) can be deduced analogously.
The scalar product of |8,, m, », with |§,, m, ), having different §,, {,, m,, can be

found similarly as {(g|B, m»,. We simply replace {gla) by ,{B,, m;Ja) in (3.17) in its

‘unwrapped’ form (A 3) and use another coefficient A’ in place of 1. After the
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integration in (3.17), differentiation after 4, A’ and a little algebra, the result acquires
the form

1
g'<,32, m,|B1, m1>g=

(#1M2Km1!mz!)”2

1
X exp { —30B11> +1B2l") +mﬁfﬁx

_ Vil — Y, ﬁ§2+(v1ﬂ2_ﬂlv2)* 2}
2(upt—vv¥) 2ppt—v v

) ("’) T~ A" PP (=t )" Vi Hyy

i=o\J

B B,—B,T
8 (rj;)‘u—z)ffm—j(ﬁjz;ﬁ)’ (3.18)

where the coefficients are
A =vi2p, —(32u8)/K,  Ay=v,[2p%—(v,/2,)/K,
B, = —o¥, +[BY/uf— (2B, /u:)(v3{2uD)]/K,
B, = —ag; +[B1/11 — (28 u$)(v, /21K,
K=1—v,v¥/u,ut, T=1/24,K, o ,=A,—1/44,K?

3.19)

To obtain (3.18) we transformed A, A’ to other coefficients by the linear transform-
ation{p'=1", p=4+ T4’} since they appeared after integration in a common product.
(3.18) agrees with the result from [8] for m=m'=0. To imagine the scalar product
from (3.18), we can say that it arises from an interference of ¢ with ¢, both of
which can be differently squeezed and displaced in the plane a.

4. Degenerate parametric amplification with classical pumping of
D(P)m)

In section 5 we describe damping of |f, m),. For this task we have to find a one-
parametric generating function of ¢J(a) for |, m),, we call this the ‘unwrapped’
form of ¢T (). By this we mean ¢, as a function of some parameter, which generates
@™(ax) for m> 0; similarly as {a|.S({)D(B) exp (Aa™)|0)> generates {a|f, m),in (A 5). In
principle we could use a two-parametric generating function of ¢(«) in the form of
the product of the matrix element {(a|S({)D(B)exp(da*)|0)> with its complex
conjugate, having the coefficient A’ in the place of 1 in the same way as in (3.18). The
differentiation after 4 and A’ would give the correct ¢7 (), but if we make a number of
transformations of the type (3.16) with such a two-parametric generating function it
will soon become cumbersome for differentiation after A, A'. We will show how the
one-parametric ‘unwrapped’ ¢7(a) can be deduced.

Consider the following quadratic Hamiltonian

H=hw(a*a+1)—3ihg[a® exp Qiwt—ie)+H.c.], 4.1

where w is the frequency, g the interaction constant and e the phase of the classical
field. The evolution operator in the interaction picture of (4.1) acquires the form of
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the squeezing operator (2.5). The solution of the Heisenberg equations for a and a*
follows [14]

a(t)=u()a(0)+v(t)a*(0), a*()=[a(n)]*, (4.2)
where
u(t) =exp (—iwt) cosh (gt), v(t)=1exp (—iwt +ie) sinh (gt). (4.3)

We will use the Heisenberg—Langevin approach [7] for performing the evolution of
displaced Fock states D(B)|m) as the input of (4.1).

We observe in (3.12) that ¢%(a) for the states D(f)|m) can be found in the
following way,

o —(_l)m om
d(a)——m a@exp(—lola—mz)‘oﬂ‘ (4.4a)

This leads us towards the ‘unwrapped’ one-parametric representation of ¢7 for
displaced Fock states

1
& (a, Ao)=ge"p (_10|“_B|2)- (4.4b)

Squeezing it now in (4.1), results in the one-parametric ¢, for |f, m),.

Note that if we insert A,=1/(7+1) instead of Ay=1 in (4.4a) and divide the
expression by (n+1)"*!, where 7 is the number of chaotic photons, we obtain a
generalization of ¢}, for a superposition of the state D(f)|m) with a chaotic field.

We will proceed in the following way [7]. First we find an anti-normal
characteristic function C,, then a generating function C?, and finally photon-
number distributions p(n) and factorial moments {W*) . The end of the present
section is devoted to ¢, needed in section 5.

Inserting (4.4 b) and (4.2) into (3.2) and applying (A 1) to it to perform anti-
normal re-ordering [7], we gain the one-parametric C% for |, m), in the ‘un-
wrapped’ form

L A D

x=—3uvtec) P, y=x—z+prh—pE*,  z=|k?, k=Efu*—iro,

where (3.16) and the substitution 4;=1—p have been used. Thus the final form of
C%, extending the differentiations from (4.44) into (4.5) and employing the
generating function for Laguerre polynomials [17], reads

1
(&, E% ) =—exp () L(2). (4.6)
m.

We can continue with the generating function C}). Making use of (3.6), (3.4),
(3.16) and (4.5) the result follows

Whr s 1 Aty ATy
PO =3 A=A =iy [(1—1/111)*(1—/1/12)]’ @7
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where the parameters are

X=@ror A+ o) =)= | L+l — A +o? |12,
A 2) |4
Vot + o —t(ul+lol),  Z=uol =1 foa=—t b 4
A,o y 10 ’ 1,2 YiJZ’
1, X—|A4P 1,X—|AP
—_—— e e AT—— — .
UEATLL T4, Bu—p*o )

C% from (4.7) generates the photon-number distributions p(n) and the factorial
moments { W*) . in ‘unwrapped’ forms. Employing (3.7, 8) p(n) results as in [14],
d 1
=o I'(1+1/2) 4.9)

1 1-1/E\' 1, —12 1,
*T—i+1/2) (I—IIF) L (E(E——l))L""' (F(F—l))’

where E=1—-1/4;, F=1—1/4,, ' are Gamma functions and L} are Laguerre
polynomials [17]. The formulae (4.9), and (4.10) will be referred to in section 5 in
connection with the damped p(n) or {(W*) ,. Since we know p(n) for m>0 from
(3.14), we can go on with (W%,

1 k 1 E—1Y
FD= S F= D2, TG+1/2)(k—i+1/2) (F-— 1) LB AL dama)

pn) =7 (EF) (1~ 1| FY exp (5, [E+ ] F)
0 i

= .

(4.10)

For m>0 (4.10) must be differentiated as in (4.44). The relation dLi(x)/dx=
— Li*Y(x) [17] and the fact that 4, , and 7, , are functions of 1, must be respected.
Unfortunately, closed formulae do not exist even in the limiting cases =0 or v=0,
so that the procedure is rather different for every m.

We can close this section with the squeezed ¢ (a, t) for C, from (4.5). Inserting
(4.5) into (3.5) and using (3.16), ¢ directly follows as

1 1
d),,(a,a*,t)=mK—oexp{E[—BolA+a|2+(C°/2)(A+a)"'2+c.c.]}, (4.11)

where
Bo=1/do(lul* +{v|*) —|v|?, C'l2=uv(1/io—1/2), Ko=B3—IC°?. (4.12)

In (4.11) we dispose of the one-parametric ¢7, in the ‘unwrapped’ form. By changing
u—p, v— —vand A,—1, it approaches the correct limit of the square of the absolute
value of (A2). Here we will not use ¢, from (4.11) to generate ¢" for m>0,
because they are known from (3.11), but the generating function ¢, will be putasan
input of a damping process in section 5.

5. Damping of the states |f,m),
Consider the Hamiltonian for a single-mode radiation interacting with a
reservoir of phonon modes [7],

H=hoa"a+Y hob; b+ kba* + kb a), (5.1)
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where w;, and k; are the frequency and interaction constant corresponding to the 7ith
mode respectively. The generalized master equation in the Markoff approximation
[12] and in the interaction picture for (5.1) reads

d

‘a—‘:=%(20;)a+ —a*ap—pata)+yn(a*pa+tapa* —atap—paa™), (5.2)
where 7 is the damping rate and # the mean number of chaotic phonons.

¢, for the damping process described by (5.2) can be found by the standard

method of the Green function for the Fokker—Planck equation of (5.2). The Fourier
transform of this ¢, gives the damped C,, [12],

Cola,a*, )= J¢d(a, a*yexp [—E[2" + (Ca* — {*a) exp (—yt/2)] A%,  (5.4)

{'=(n+D[(1—exp(—y1)], (3.5)

which is directly related to ¢ (a, a*) at the input.

We will proceed in the same way as for section 4, inserting the one-parametric ¢
from (4.11) into (5.4) and using (3.16) as before. The ‘unwrapped’ one-parametric
C for damped |8, m), follows

1
C (o, 0%, 2) = exp {2 —E1P[L" + By exp (—y8)] + By exp (— yt/2)(d*E — dE®)
0

+(C%/2)*[2d¢ exp (—y2/2) + & exp (—y1)]
+(C%/2)[ —2d*¢* exp (—y1[2)+ &*> exp (— )]}, (5.6)

where the new parameters are

d=—(BoA+C°4)/K,,
D =B,(|AP Ko +d|") +[(C°[2)M( 4%/ Ko+ d*) +c.c.]. (5.7)

The structure of (5.6) is exp [L(4¢)/L,(40)]/Ag, where L(A,) are polynomials of a
fourth degree. This is the form of (4.7) with four fractions in the exponent.
Unfortunately, closed formula for m>0 from this generating function cannot be
obtained, even by a numerical computation of the roots in the fractions (see the first
paper in [2]), because C, must be differentiated at the end after £ and &*.

We have found C7, in the two limit cases (@) § =0, (b) v=0, for which 2 =0. After
simple algebra C, and C?, for these cases can be rearranged in the forms (4.5) or (4.6)
with the coefficients (x, z in (a) are from (4.5))

(@) ya=(@x—2z)exp(—yt)—LIEI?,  z,=zexp(—y1), (5.8a)
() yp=—IZP( +exp (—yD)) +exp (—yt/2)(B*E— BE*),  z,=|é|* exp (—71).
(5.8 b)

Let us search out several damped moments, making use of (3.9) and

<(A;)2> =1 + [((Aa)2> + <(Aa+)2>] + 2<Aa+Aa>
=12 [{a*2y+{a?y—(a* Y —(ay2]+2¢a* a) —<a* H(a)), (5.9)



900 P. Kral

we obtain for the two limits

(@) <ay=0,

(a?y=—exp (—yuelL30)+2LL_4(O)]

(aa®y =L (0 +exp (—pOWPILIO) + L O +e exp (0], [
<(AZ)2> =1 i% exp (—yt)[L2(0)+ 2LL _ ,(0))(uv + u*v*)+2((aa* > —1), )
) <ay=—[Bexp(~71/2) YO, \
G =%[ﬁ’ exp (—yt) Ln(0)], [ (5.108)
(aa*y = {[{'+ exp (—701 LY(O) +exp (—70) [APLO) + Li- O}

where LX(0)=[(m+ k)'1/(m!k!). In (5.10) we employed the relation {aa*)=1
+<{a*a), holding in the Schrédinger-Markoff picture, where commutation rel-
ations are preserved [12]. Further moments will be deduced by the Heisenberg-
Langevin method in section 6 and presented by numerical examples.

We can concentrate on the damped generating function CY}. By inserting C,,
from (5.6) into (3.4, 6) and suitably rearranging the result, we obtain C%}? in the form
(4.7) multiplied by exp {2}. The photon-number distributions p(n), and factorial
moments { W*) , derived from it, acquire the forms, shown in (4.9) and (4.10), both
multiplied by exp {Z}. The new coefficients follow

X=—[{'"+Byexp(—yt)—1]lal* +[(p/2)*s* +c.c.],
Y=1-[{"+Bgexp(—71)],

Z=|C%exp(—2yt),  p[2=(C°[2)exp(—7t),
o= —exp (—7¢/2) (Boyd+ C%a*),

(5.11)

where 4, A, T;, T, have the same structure as in (4.8), changing the term |4|? by |a|?
in the explicit forms of 7, and 7,. Rearranging of p(n) and {W*) , for m> 0, after the
differentiation under 1, is governed by the same barriers as in (4.10). Therefore we
present a numerical approach to p(n) in section 6.

Finally, it remains to find the one-parametric damped ¢, for C, from (5.6). We
use (3.5) and find out that ¢, acquires the form of the result of the integral in (3.16),
multiplied by the factor exp {Z}/n%4,. The coefficients are, after the replacement of
C and C, in (3.16) by p and p*,

B={'+Bgexp(—yt), D=o+a, D,=—D* (5.12)

As regards rearranging of ¢, for m> 0, the situation is the same as with C 4 in (5.6),
but now polynomials of the sixth degree should be used. Since ¢7 need not be
differentiate in contrast with C%, this enables us to obtain a closed formula for ¢,
when numerically computing the sixth roots and differentiating such a generating
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function. We do not attempt this procedure and consider ¢, in the above limits (5.8).
Results appear very simply.

Performing the differentiation from (4.4 a) onto ¢, for the case (a), ¢ acquires
the form of (4.9), where the prefactor 1/i, is replaced by 1/(ndy). The new
coefficients are

So=(ul?—[v|*)? exp(—2y1), 8, =[{'—|v|? exp (—7£)]* —|uv|® exp (—2y2),
8y =2(|u|? + |v|)[L’ —lv|* exp (—y)] exp (—y2) + 4uv|? exp (—2y1),
y1=—(tl® +o)|a]® exp (— 2} + (x*u*v* + c.c.) exp (—y0),

[ (5.13)
2= [lv]* exp (—p8) — {'l|a|> — 3 (a®u*v* +c.c.) exp (— 1),

z =L A1¥2 471 T =l A2¥z+¥1
Y80 1=AyfAy" P 8 1—Ay/Ay

Ay 2 =[-8, + (87 —46,00)"/21/(28,).

Py

Examples for m=1, g¢t=0,0-8,1-6 and 3 and =1 are demonstrated in figure 2. We

can see that damping leads to two effects appearing in ¢7. At first it produces, from

the disconnected wall-like ¢, a series of disconnected hills which move toward the

coordinate centre (figure 2 (b)). Secondly, it smooths these hills in such a way that

they start to produce continuous ¢ (figure 2 (c)). For longer periods ¢ approaches,

as we would expect, a Gaussian form for a chaotic light with #=1 chaotic photons.
Similarly ¢7, can be converted for (). It acquires the form

_ 12
P (o, o*, )= exp (+17) (A‘C )L,?,[ A‘C], (5.14)

mi(1— 1)1 P\ —1 A, —1
where
1
C=—|Bexp(—yt/2)—of’exp(+yt), A= —-C—,exp(—vt)- (5.15)

We will look at the evolution of this damped ¢7 in more detail. It can be seen that
first the ring of ¢’y (for small 7 and |B| > m) starts to move from the point & = f towards
the centre of the coordinate system (as in the usual damping of a coherent state [7]).
After a time of order 1/y the ring diminishes and ¢, for a coherent state develop in
the moving centre of the original ring. For longer periods the process follows the
damping of the coherent state. For greater # or || <m an evolution is more blurred.

6. Numerical results and discussions

Although the above derived formulae are exact, in practice they could lead to
considerable trouble. We will demonstrate how photon-number distributions and
moments can be calculated numerically. Our interest concerns the states |§, m);
(i) undamped, (ii) damped by one-photon, (iii) two-photon absorption.

6.1. Undamped
Numerical results for photon-number distributions p(n) of the states |f,m),

could be obtained from the expression (3.13) or can be found numerically in the form
of a sum of scalar products of vectors b¥|n) (b* from (2.9)) with S({)D(B)|0)>. We
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(L L7727 L L L L LS

L2777 L L LSS

(d)
Figure 2. Time evolution of the damped anti-normal quasi-distributions ¢L(a) for the state
|p=0, m=1), and v=2. Cases (a)(d) correspond to g¢=0,0-8,1:6,3 and n=1.

will clarify the last possibility. Employing the elements (A 7) and rules (2.8, 9) we get

a+m

CASODB > = <alSODIB) 10>

=71,,‘,i (IS()(a* — B*Y"D(BIOY

1
=i {nl(d* — p*"S()D(B)|0)

1 = .
= i & (?)(_B*)m“'<"|b+'S(C)D(B)IO>. (6.1)

The term b*'=(u*a™ +v*a)' acts on {n| as
{nlbti=[{n— llp*\/n+ (n+ v+ 1) (u*at +v*a) 1= ... (6.2)

This calculation and a final sum of elements (k| S({)D($)|0> can be performed by
computer. Some typical examples of p(n) are demonstrated in figures 3-11.

Figures 3 and 4 pertain to shifted Fock states D(B)|m), for which it holds that [18]

!
pn) = exp (— |B%) B LLE "B (6.3)

Figure 3 in particular shows p(n) for the first four Fock states with |f|=35 B=a,
for v=0). ¢, for |m), displayed in (3.12), reaches a maximum at |f| =\/ m. These
maxima are for D(5)|3) displaced to |a|?=(5% J 3)2, which correspond approxi-
mately to the maxima of boundary peaks of p(n), when n= |a? is substituted. For the
chosen conditions the centre of the coordinate system lies outside the ring-like ¢ ,.



904 P. Krdl

~ p(n)

0.2“_/\/\&
0-11
B AVaVUAY N

0 10 20 30 40 50  'n

Figure 3. Photon number distribution p(n) for the first four Fock states [m=0-3), displaced
into the point ay=>5. Ordering of the curves m=0-3 is from the top to the bottom.

In figure 4 we can see p(n) for D($)|20)> with f=0—1 and the step 0-2. For f=1
the centre of the coordinate system lies inside the ring-like ¢, and the maxima of p(n)
are approximately at n=[(20)/2+1]%. All curves pertain to the first region of
sub-Poissonian behaviour described at the end of section 2.

Figure 5 demonstrates an evolution of p(n) for m=0-2, v=0-5 and a,=35. For
v#0 we must take into account the angle of oy =|oto| exp (ip) or pu, v. For v#0 and
p=(1+v*)Y2 from (2.7) we obtain ¢, squeezed from the sides and its centre displaced
into the point &4 in the complex plane a. For ¢ =0 typical fast oscillations appear in
p(n). They arise by the interference of cigar-like ¢, and the photon-number rings
(Ja|? = integer). Thorough discussion of this phenomenon for |8, 0>, can be found in
[13]. From (3.11) and figure 1 we expect slow oscillations when the photon-number

4
t

—_ N WS U@ p(n)
\
]

(ool eNoNoNolNolNe)

0] 10 20 30 n
Figure 4. Dependence of the photon-number distribution p(n) for the displaced twentieth

Fock state D{%)|20) on the displacing parameter a,. Curves are ordered from behind
with the parameter a,=0,02,0-4,06,0-8, 1.
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e
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(e
Figure 5. Dependence of the photon-number distribution p(n) for the state |8, m=0-2),

with o5=5 (connection between a, and §, u, v is in (2'4)) on v, which varies as
v=0,1,2,3,4,5 (growth of v is from behind). Cases (a—c) correspond to m=0-2.
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circles pass through the holes in ¢ . For m=2 and o, = 0 we easily find the minima of
P2 at |o;0l2 =v(1+v2) 2. So that for 0y #0 and ¢ =0 the minimum in p(n) should
appear at the point 7= |tg|? + |otgal? = ool + (1 +v*)/2. For v=3,4, 5 and ay=5 we
have n=345,41-5,50-5, which is in agreement with figure 5(c). This figure
represents an interference of the two holes in @2, with the photon-number circles.
Similar falling of the photon-number distribution should arise for higher m at every
hole pair, and when @™ rotates in the plane « at general hole pairs. The behaviour of
peaks, having their centres at the smallest n in figures 5(a)(c), reflects an
interference of the photon-number rings with the centre of ¢ . For odd m ¢ , has a
central peak, for even m it does not. This results in jump-like or continuous
behaviour of p(n) for the smallest #. If the initial value of p(n) for the smallest 7 is
taken to indicate the fall of pressure in a whistle, for even m the whistle should be
closed, for odd m it is opened. The number m then represents the exicted mode, and
in p(n) this is displayed by (m+1)/2 local maxima in slow oscillating peaks.

For ¢ =n/2 typical two-photon oscillations come out in p(n). They arise whenever
|| is so small that ¢, reaches the centre of the coordinate system and parts of ¢ , are
on both its sides. Then the photon-number rings interfere with these parts, which
results in oscillations. An example for |8, 1),, g =7 exp (in/2) and v=1-5 is shown in
figure 6 (a). It is easy to deduce the maxima of ¢ 4 for ¢ =n/2. For ¢, and ¢y =0 they
are at |¢|2=1/(1 —v/y), so that for ag#0 they shift into || = [|ao|+ 1/(1 —v/p)i?),
This approximately agrees with the maxima in p(7), but it is not so simple to obtain
the end of the two-photon oscillations. For v=4 the maxima of ¢, are at (7+5, 8)2,
so that a long tail lies behind the coordinate centre and gives rise to them. It is
convenient at this point to call attention to an interesting fact, that when
¢ 4 for ¢ =7/2 is sufficiently far from the coordinate centre, only slow oscillations (the
same as in figure 3) appear in p(n). In such a situation no new oscillations occur owing
to the squeezing and the presence of holes in ¢, only the oscillations from clearly
displaced Fock states appearing in figure 3 are elongated to higher #, regardless of the
fact that the structure of ¢, dramatically changes. Figure 6 (b) shows the same as
figure 6 (a) but for ¢=1,18. All oscillations are now present and their eventual
sources can hardly be separated. A consequence of ¢ #0 is a transfer from a two-
photon towards more slow, but less regular, oscillations, characteristic of figure 5.

In figure 7 p(n) is demonstrated for rotating ¢,. The parameters are m=2,
oy =7 exp (i), v=2 and ¢ varies from 0 to /2, beginning at the lower curve. We can
see a transition of p(n) for a vertical ¢, with its two main maxima (one of which is
oscillating as in figure 5 (¢)), appearing owing to the presence of holes in ¢, towards
p(n) for a horizontal ¢, with its three maxima (the first of which is brought by two-
photon oscillations in analogy with figure 6 (a)).

In figure 8 we show p(x) for |0, 203, and v=0-0, 5. If we consider the maximum
and minimum boundary distances of the ring-elliptic ¢ from the coordinate centre
to be at ||>*=20|u+v|?, we find the end positions of the row of peaks in a good
agreement with figure 8. For v=0-3 and 04 the boundaries are at n=11-1,361, or
n=9-2, 436 respectively. The structure of peaks gives the impression of bunching.
For a small v the field |8, m), is sub-Poissonian, as in figure 4.

Figure 9 displays an evolution of p(n) for g =0-1 and the step 0-2, for the second
curve v=0-1 from figure 8. It can be observed that the central peak at n= 20, which
disappeared in figure 8, reappears and moves toward higher n. It corresponds to the
most distant boundary of the squeezed elliptic @20, which interfers with photon-
number rings. Similarly the hill-like peak corresponds to the nearest boundary. As
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Figure6. Thesame asin figure 5 for [f, m=1),and a;=7 exp (ip). The squeezing parameter
vvariesas v=1, 2, 3,4, 5, starting from the back curve. The values of ¢ are ¢ ==/2, and

@=1-18 for (@) and (b) respectively.
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Figure 7. Dependence of the photon-number distribution p(n) for the state |, m=2),
with m=2, v=2, ay=7exp (ip) on the angle ¢. Curves are ordered from behind with
@=m/2-0 and step n/12.
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Figure 8. Asfigure 5, but for |8, m = 20), with &, =0 and v varies from the top to the bottom
with v=0, 01, 02,03, 0-4, 0-5.
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Figure 9. Dependence of the second curve from figure 8 for v=0-1 on the parameter a,,.
Curves are ordered from behind with a,=0,0-2, 0-4,0-6,0:8,1.

Z’ is squeezed from the sides, the maximum and minimum boundary is

approximately at |a|? =[(20)"/2|u+ v| + 2o|2. This agrees well with figure 9, where for
%o =08, or 1, we have n=10-5,23-5, or n=9-3, 25-5 respectively.

Figures 10 (a) and (b) represent photon-number statistics for a displaced and
squeezed chaotic density matrix (Bose—Einstein distribution) computed as a
superposition of p(n) for Fock states. The parameters are n=0-2 chaotic photons in
the field, ay=5, v=3 and ¢ =0 and 7/2. It is obvious from the statistics that chaotic
photons smooth all oscillations. p(z) for a superposition of |f, m), with m>0 and a
chaotic field can be computed by the method described under the expression (4.4 b)
and for m=3 it is presented in figure 12.

Note that an analysis of non-classical fields with non-zero noise has appeared in
reference [19]. There investigation was performed starting from a Gaussian-Wigner
function ¢, (see (3.5)) of a general form. ¢, functions employed there cover up those
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Figure 10. Dependence of the photon-number distributions p(r) for a displaced and
squeezed chaotic density matrix p with the parameters a,=>5exp (ig), v=3 on the
number of chaotic photons 7. (a) and (b) correspond to ¢ =0 and ¢ =n/2 and the curves
are ordered from behind with #=0,1, 2.

¢, which could be found by using (3.4) and (3.5) from ¢ with the parameters (5.12)
and m=0. For this case ¢, is really found in [19]. For m> 0 a more general class of
functions should be chosen to describe a corresponding ¢,. This is clear from the fact
that the ¢, for m>0, found here, arises from those for m=0 by a differentiation
resulting in a pre-exponential polynomial. Analysis very similar to the present work
appeared parallely in [20] where |8, m}, states were investigated and their Wigner
function ¢,, described above, were found. Both works deal with squeezed thermal
states particularly, whose photon-number distributions are displayed in figure 10.

As regards the work done in [20] and the subsequent paper in Phys. Rev. from the
same authors, quantum fluctuations, photon-number distributions and further
interesting results, for squeezed thermal and Fock states, can be found there. In
going beyond the scope of this paper it covers, for example, a generalized version of
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ideas from [13], concerning an interpretation of oscillations in p(n), resulting from
interferences in a phase space.

Figure 11(a) presents the reduced factorial moments {(AW)?),/[KW)3
={W?2  [{W)2 —1=gD—1, where g is a second-order correlation function [7],
for |, m), found from (2.15) and (2.16) for m=0-3,10500, ao=7, v=0-32. The
curves are ordered from the lower m=0 to the upper m=>500 at the point v=4.
Figure 11 (b) shows a detail of the sub-Poissonian behaviour of |8, m», with m=0, 1
from figure 11 (a). These examples fall in the second region described at the end of
the section 2.

6.2. One-photon damping

For investigation of damping of the states |8, m), it is more convenient to start
from the generalized master equation (5.2). Acting on both its sides {(n| and |n)

[a¥]

2 2
C(al) )N/<N)N

—
+

(a)

vz 0-21

=
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=
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=

2

~ O‘l- /
3:
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)

Figure 11. Dependence of the second reduced factorial moments ((AW)*>,/ (W% for
|8, m>, with m=0-3, 10, 500, ag =7 on the squeezing parameter v. Curves are ordered at
the point v=4 with m=0-3, 10, 500 and (b) is a detail of the anti-bunching behaviour
from (a).
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respectively results in a differential equation

o) =[2(n—1)p, . , (1) = 2np (1) + yii[np_ () + (n+ 1)p, 4 L () — 2n+ Dp(1)],
(6.4)

which can be rewritten into difference equations. We solved (6.4) numerically.
An example for m=3, v=1, ay,=3, n=1, gt; =16 x 10~ * (the first curve) and
(gt)i+1=1(gt);x 2 is presented in figure 12. All structures in p(n) are gradually
smoothed out and it approaches the Bose-Einstein distribution of the reservoir.
Damped moments can be found analytically by the Heisenberg—Langevin
method [12]. The explicit solutions, holding for all initial moments, result after some
simple calculations:

(a(t)) =<a(0)) exp (—7¢/2)=Ca™ (1)>*, )
@2(t)y ={a*(0)) exp (—yt) =<a* X(1))*,
{a® (Da()y =<n(t)> ={(n(0)) exp (—yt) + A1 —exp (—y1)),
(A%ny ={n?(t)) — (n(t))? e (69

= {A%n(0)) exp (— 2yt) + {n(0)>(27 + 1) x exp(—7t)
X [1—exp (—yt)]+7*[1 —exp (—y8)]* + A[1 —exp (— 1)),

q, \ g, \
<(AP (t)) >= 1 +[<(AP(O)) >—1]exp(—yt)+2ﬁ[1 —exp (—y1)].

The unknown moments for t=0are in (2.13)(2.16). Moments from (6.5) agree with
those from (5.10), in the special limits chosen there, and with the results in [14] for
the states |8, 0),. Examples of the damped second reduced factorial moments for the
same parameters as in figure 11 (@) except gz=3 and 7= 3 as in figure 13. In the course
of evolution, curves reordered themselves conversely to figure 11 (a), so that it is
obvious that damping does not apply too much of the second reduced factorial
moment for higher Fock states.

Finally we point out that we can find other moments by integrating the elements
{n|lpa*i|n) in the same way as the photon-number distributions in (6.4). We will not
go into details here, but show several examples of such calculations in figures 15-16.

0-24

g t ' +
0 10 20 30 n
Figure 12. Time evolution of the photon-number distribution p(n) for damping of the

state |B,m=3), with m=3, v=1, ay=3 and fz=1. The nearest curve corresponds to
gt, =16 x 10~* and the following curves to gt;, , =2gt;.
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Figure 13. Dependence of the second reduced factorial moments on v for damping of the
states |8, m),. The initial parameters are as in figure 11 and damping parameters are
gt=3, n=3. Curves are reordered conversely to those in figure 11.

6.3. Two-photon damping

An interesting situation arises for multiphoton absorptions [7]. The correspond-
ing generalized master equations (5.2) all acquire a similar structure. For a two-
photon case we show evolution of the photon-number statistics in figure 14 under the
same conditions as in figure 12 for the usual damping, with the only changes that
gt,=10"* and 7=0. The present curves look sharper, which reflects the fact that a
two-photon absorption can narrow the photon-number statistics [7].

Figure 15 (a) represents evolution of the corresponding reduced photon-number
variance {(An)?>/{n) for m=0, a5 =23, v=0-0-6 (v grows from the upper curve) and
gt=0-0-04. Continuation for v=0-8-1-4 is shown in figure 15 (b) (v grows from the
lower curve). The curves look like having a common limit value for gt— o0, which is
perhaps true, at least for curves starting from sub-Poissonian states. A consequence
of this fact is that the statistics of the curves with an input photon-number variance

o pln)

0:41%

0-2¢

TN TN :
0 10 20 30 n
Figure 14. Time evolution of the photon-number statistics p(n) for two-photon damping of

the state |8, m=3), under initial conditions as in figure 12 with the only changes =0
and gt, =10"*%.
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Figure 15. Time evolution of the reduced photon-number variance {(An)2)/{(n) for a
two-photon damping of the state |8, m), with m=0, y=3, v=0-0-6 corresponds to
(a) (v grows from the upper curve). Figure 15 (&) is a continuation for v=08-1-4 (v grows
from the lower curve).

under such a hypothetical limit only become broader. Analogous results appear in
the first paper of [2].

Figure 16 finally displays evolution of the coordinate guadratures (5.9)
(w=Hh/2=1 is chosen) for the conditions in figure 15 (a) (the bottom curves, where v
grows down, hold for {(Ag)*) and the opposite is true for ((Ap)?)). The curves are
now monotonously ordered with increasing v, which holds for all values of v. Similar
results can be found for higher photon damping.

7. Conclusion

We have investigated displaced and squeezed Fock states as a generalization of
TCSs [8]. The general approach to generating functions permitted us to find all the
important functions for analytical investigations of the states |B,m),. Interesting
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Figure 16. 'Time evolution of the coordinate quadratures {(Ag)*), {(Ap)?) for two-photon
damping of the state |8, m), with the initial conditions as in figure 15 (a) (0=h/2=1is
chosen; the bottom curves, on which v grows down, hold for {(Ag)?) and the opposite is
true for {(Ap)>>).

behaviour of their quasi-distributions and photon-number distributions was
observed. We found that ¢ 4, for a given |, m>, and |v| not too small, is not continuous.
This prompted us to think that new quantum phenomena could be disclosed when
these states are used as the input of a suitable process. We can imagine that the
disconnected parts of ¢7 could serve as relatively independent parts of the mode. In
subsequent investigations we studied |8, m), states as the input of the Kerr nonlinear
medium [4]. A lot of interesting results have been found, which will be
published [21].

We have also used these states as an input in the Jaynes—Cummings Hamiltonian
[22] for one-photon case o * a, two-photon degenerate case ¢ * a*, non-degenerate case
o*a,a, and three-photon case 6*a2a,. In all these cases it could be seen that the
chaotic Rabi oscillations of the atom disappear with a narrowing of the statistics of
the modes.

We would like to draw attention to the fact that |B, m), states form a special basis
of squeezed states which might find their application when general squeezed states
are studied. We note that by applying the operators a*’ from the left and @' from the
right of the transformed completeness relation (3.15)

ooty 3B
j SODBIOX0ID* (B)S™ (L ) =1L
and using (2.8) and (2.9) for commutation of a*, and a with S({)D(B), and
S()*D(P)* respectively, we obtain interesting representations of the operators
a*id'.|B, m), may be important not only in optics, but also, for example, in molecular
or solid state physics. There, in elementary versions, some quasi-particle modes with
finite damping rate could be found in damped states |8, m),.
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Appendix
If we use the Baker—Hausdorff identity [12],

exp (4 + B)=exp (4) exp (B) exp { —[4, B]/2}
(A1)
=exp (B) exp (d) exp {[4, B2},
where A, B are non-commuting operators fulfilling

[B,[4, Bll=[4,[A4, B]]=0,

and the matrix element {(¢|f), from [8]

<alﬁ>,=\—/1;exp[—'%l—z-—@—(2‘;) *2+( )ﬁz+-:;a*ﬁ+lo] (A2)

we obtain

aSO)D(B) exp (4a™)|0> = (o S() exp [Ma* — B*)] D(B)(0)

=exp (—AB){alS({) exp (da™) exp (—|BI*/2) exp (Ba™) exp (— f*a) |0)
_ Il’il2 .
=exp| —Ap——— KalS({)exp[(A+ Ba*]|0)

Iﬂl2 H+ﬂ|2

=exp( i )< 2SEODGA-+ B0

2 2
=ﬁexp(—lﬂ'—m—l——|—‘:u e (,1+/.'3)2 —(A+ﬂ)+10)

=exp {A2(v*/2p) + A[B(v*| ) — B* + a* ]} (2l B, (A3)
=exp {A2(v*/2u) + A(oa* — a) u} <alBD,

=exp {424+ 1B} (B,

=exp (— B?/44) exp {A(A+ B/24)*} (a|B),,

where we took into account (2.8), (2.2), (2.4), (2.7) and (A 1). Now we employ the
definition of the Hermite polynomials [17]

(A4)

H&)=(~ 1 exp ()

and make the substitution 2= —(— A4)!2(14 B/2A4) in (A 3). This choice is more
convenient than the other possible z=(—A4)"?(A+ B/2A4), which can easily lead,
when badly treated, to serious errors.
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We can continue as follows

ol SE)D(B)m) = \/ i a/1,,<oz|S(C)D(ﬁ)eXp(,1a+)|0>

=0

=By, o
x exp (—B2[44) (—/— A" dd:... ~ oexp(—zz)
= AN~ AR a5)
from which @7, directly results
e A remt TN (A6)

Similarly, using the matrix element {#|f), found in [8]
1 (v B 1B, v
—_— | — H _r 2

Ilfl2 I'Prlﬂ2

we obtain

{n|SC)D(P) exp (fla+)|0>=exp( Ap* — )( IS(O)D(A+ |0
1 v \"? B+4 1[3|2 v*
) (ﬂ) H"((zuv)‘“)e"p[ B (2u)ﬂ ]
xexp[lz(g)-{—l(%ﬁ—ﬂ*)]. (A8)

1 o=
{nlB, m>g=W m (| SOD(P) exp (Aa*) |0 o

1 v n/2 Imz v
:———(n!m!,u)”z (Eﬁ) exp[—7+( )ﬂz]
min (m,n) /) ; n! 1 i ﬂ
L (z')z(n—a! ((2uv)”2) H""'((zuv)”z)
p#\n—i0)/2 of
(GO R Y

where we followed the way from (A 3) to (A 5) with new coeflicients 4 and B and
used for formula

Therefore

i15[»(2)=2nf“1’,.—1(2)- (A10)
dz
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