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Gradient expansions in quantum transport equations of a Kadanoff-Baym form 
have been reexamined. In a consistent approach the expansion should be per- 
formed also inside the self-energy in the scattering integrals of these equations. 
In the first perturbation order this internal expansion gives new correction terms 
to the generalized Boltzmann equation. These correction terms are found here 
for several typical systems. Possible corrections to the theory of a linear 
response to weak electric fields are also discussed. 
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1. I N T R O D U C T I O N  

Time-dependent transport phenomena in quantum many-body systems can 
be described by the nonequilibrium Green's function formalism (NGF) of 
Kadanoff and Baym I~ or Keldysh. 12~ The Kadanoff-Baym transport equa- 
tions for nonequilibrium correlation functions can be obtained by analytic 
continuation to real times ~31 of the Dyson equation for Matsubara Green's 
functions in purely complex times. ~4' 51 The differential form of these equa- 
tions has been applied in many systems. 16-9~ Usually it is necessary to 
approximate the equations on several levels, ~ ~1 although in some systems 
the equations can be directly solved by powerful numerics, t ~0t The integral 
form of the Kadanoff-Baym equations has been less exploited because 
approximations in a time domain are not so familiar hereJ ~1 Both 
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approaches also have been used to develop a linear response theory for 
quantum systems in weak dc and ac electric fields. Here the integral ver- 
sion ~21 seems to be more direct than the older differential versions c~3 ~4~ 

All functions in the Kadanoff-Baym equations depend separately on 
two time and two space arguments (r~, r2; t~, t,). This two-argument struc- 
ture, which results in nonequilibrium many-body systems with time or 
space nonlocal scattering, is the main obstacle in solving the transport 
equations. An approximate one-argument form of the equations can be 
obtained in systems with not very strong interactions. ~5~ Most older trans- 
port methods have a one-argument structure because they usually 
implicitly consider the presence of weak interactions. 

A different simplification can be obtained in all types of systems if 
external excitation fields vary slowly in time and space. Then it is useful to 
subtract two equivalent sets of Kadanoff-Baym equations differentiated 
over the first (r~, t j) and second variables (r2, t_,) and perform the so-called 
gradient expansion ~ in the new equations transformed to the center-of- 
mass system (CMS) 

rl.q_r ~ tl2t~ ) 
_ - " ' ~ - ~  - -  - .  ~ = ( x , X ) = ( r , t ; R , T ) =  r t - r , , t l - t ~ ;  2 

In the transformed equations various terms have second arguments with 
uppercase variables (R, T) shifted by different fractions of the lowercase 
variables (r', t'). The Taylor expansion of these terms in the small variables 
around the common values of the big variables is the gradient expansion. 
This expansion in powers of derivatives over (R, T) multiplied by (r', t') 
can be unambiguously and consistently stopped at chosen perturbation 
orders. In this way the two sets of CMS variables (R, T) and (r', t') can be 
step-by-step decoupled. By this decoupling memory effects are cut, so that 
the nonequilibrium dynamics becomes quasilocal and the equations get a 
quasiequilibrium form. Far from equilibrium this approach evidently fails, 
because the nonlocal scattering, leading (in equilibrium) to quasiparticles 
with a (k, rn)-dependent self-energy, should be reflected in the nonlocality 
of the nonequilibrium dynamics. 

In the zeroth order of the gradient expansion the transport equations 
get a local dynamics. Stopping the gradient expansion in the first order 
gives corrections to the equations which partially restore memory effects 
peculiar to the nonlocal dynamics. Such an equation is called a generalized 
Boltzmann equation ~1 (GBE). The GBE is not limited to weak interac- 
tions, but it can only describe slow dynamics close to equilibrium. The 
weaker the scattering, the better is the description far from equilibrium. 
When the scattering processes can be considered extremely weak, then the 
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nonequilibrium correlation functions in the GBE can be substituted by 
a deltalike spectral function multiplied by a distribution function for 
momenta. (~) As a result the GBE reduces to the Boltzmann equation (BE), 
which differs from its classical counterpart only by the degeneracy of the 
described gases. It is interesting that the integral version of the quantum 
transport equations (16) approximated by low orders of the gradient expan- 
sion do not give the BE. It is also worth mentioning that the gradient 
expansions in quantum transport equations are analogous to expansions in 
the classical Enskog equation or the more general BBGKY equations. (~7) 

The gradient corrections in the GBE described in the past (~) do not 
fully reflect the character of scattering processes because the self-energy in 
the scattering integrals of the transport equations is considered as a struc- 
tureless entity. We realized (~8) that a consistently performed gradient 
expansion should include also expansion of the self-energy itself as soon as 
the self-energy includes additional scattering events separated by internal 
vertices. (4) In the first order this internal expansion gives new correction 
terms to the GBE which are determined by the character of many-body 
scattering processes. 

In this work phenomenological rules are presented which allow one to 
perform these internal gradient expansions. The rules are applied to derive 
consistently the GBE with all correction terms. These correction terms are 
found in three examples of the self-energy: the averaged T-matrix approxi- 
mation for the self-energy in electron scattering on local potentials, the 
local T-matrix approximation, and the shielded potential approximation 
for the self-energy of interacting spinless fermions. The importance of the 
internal gradient corrections for the linear response to weak electric fields 
is also briefly discussed. 

2. GRADIENT EXPANSIONS IN Q U A N T U M  TRANSPORT 
EQUATIONS 

In slowly changing fields the two differential forms of the Kadanoff- 
Baym equations in (B.7) can be subtracted and the gradient expansion can 
be performed in the resulting equations. The right sides of the subtracted 
equations include scattering terms of the form 

.~(Xl,.~3) al~(.~3, x2), G~(xl,~3)ZIJ(~3, x2) , xi=(ri, ti) (1) 

where the analytical structure of the self-energy ~r and the Green's function 
G in (1) are determined by the indexes ~, fl=r, a, <,  and > (see 
Appendix A). 
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2.1. External  Expansions 

Consider as an example the gradient expansion in the term 
.S'~(xl,:~3) G#(.g3,x2) from (1), where the many-body structure of Z ~ is 
neglected, cl~ The expansion gives, in the CMS coordinates X=(x, X ) =  
(r, t; R, T), 

I dx~ X~(x,, x~) G/~(x3, x2) 

=f d'eZ~(-~'X)G/'(x-'e'X)*J ax ~ G/~(x-*,x) 

c3X - + --- (2) 

The new coordinates are x = x , - x 2 ,  .{=x~-x3, X=-(xt+x2)/2. 
A Fourier transform of the last expression in (2) from the coordinates 
x =  (r, t) to q =  (k, o~} gives the following expansion in a series of Poisson 
brackets ~9,: 

exp (~ D(~, ~')) Z~(~) G/S(~. ') 

=__r~(~) G/'(~) + ~ (~x~(~) aG/'(~) OZ'~(r 
" " \ O R  ~3k Ok ~ R  

OZ~is OZ'(~) aG/S(~)'~. 
- a---C- ~ r - - S - g - ~ + - - Y f - - )  + ' 

=Z'(~)G/~(~)+~[Z'(~),G/~(~)]+ ..., ~=(q,X)=(k, og;R,T) 
(3) 

The gradient expansion of the scattering term Z"(xt,.g~)G/~(.f3, x2) has 
been obtained in (3) without taking into account the many-body structure 
of the self-energy Z t  Therefore this expansion can be called external. The 
first order of this expansion includes only the first Poisson bracket in (3). 
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One can similarly perform the gradient expansion in driving terms of the 
quantum transport equations. 

2.2. Internal  Expansions 

In many systems the self-energy is approximated by Feynman 
diagrams formed by ladders or bubbles of fermion and boson Green's func- 
tionsJ ~'~" t,)~ This nontrivial functional of Green's functions, connected by 
internal integrations, can substitute the self-energy in any step of the 
calculations. The internal structure of the functional was not taken into 
account in the gradient expansion (3). Does it contribute new terms in the 
gradient expansion? It is obvious that this question can be answered if a 
systematic gradient expansion is performed in the expressions ( 1 ) where the 
self-energy is substituted by the functional of the Green's functions. 

Consider for simplicity that the self-energy describes electron scattering 
on the localized potentials V(r) = ~.,., Vo 6 0 " -  ri). Assume further that Vo is 
of moderate strength, but the number of random coordinates ri is relatively 
small. Then a suitable self-energy for this problem results from the 
averaged T-matrix approximation (ATA) ~2~ 

Z( t , ,  t2)=c{ Vo+ voa(t~,  t2)+ V3G(t~, [3) G([3, t2)+ --. } =c0(t~, t2) 

(4) 

Here c represents the weak concentration of the potentials V0 and 0 is the 
local T-matrix. The Green's functions in (4) depend only on the time 
variables because the space variables have been integrated out due to the 
local scattering. 

Analytical continuation of the self-energy (4) gives the propagator and 
correlation functions for the self-energy in the form (see Appendix B) ~ 

X"( t, ,  t~) = c{ V,, + Voa"(t  , , tz) + V~G"(t,, /3) G"([3, t2) + ..- } 

=cO"(t,, t2) (5) 

X<(tE, t2)=cO"(tl, {3) G<([3,/4) 0"({4, t2) 

=cO<(tl,  t2) (6) 

Each term in the expressions for X"" < in (5)-(6) is formed by several 
propagators or a correlation function with time arguments in "series" (see 
Appendix B). 

Let us study in detail the gradient expansion of the scattering terms in 
(1) for the self-energy in (5)-(6). Assume first that the self-energy in the 
first expression from (1) is substituted by one of the terms from (5)-(6) 
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which has two Green's functions, AZ(tl ,  t 3 )=cV3G' ( t l ,  t2)G/~(/2, t3) (no 
index is used on the contribution to the self-energy AZ, to show its analyti- 
cal structure). Then the expression A~r(t~, i2) @'(i2, t3) can be transformed 
to the CMS coordinates as follows (we suppress the prefactor cV30 and 
neglect the fact that the function G ~' depends also on space variables): 

Ga(ll, t2) G/~(f2, i3) GY(/r3, ta) 

G ~ ( t ~ - i ~ ,  tl + - t2+ - - - 2 t2) G/~( i2-f3' 2t3) G~'(f3--t4't32 t4) 

• G ~' ( r  - ~?1 - "~tl, T 2 2 J '  ~,fl, y = r , a ,  < ,  > (7) 

where (r, T)=(t l-- tz , ( t l -1-  t4)/2 ) and " ~ = t t - - i 2 ,  ?n=/r2--/r3. In expres- 
sion (7) a Taylor expansion in the r coordinates can be performed around 
the T coordinates as in (2). In first order each of the Green's functions 
differentiated over T has multiplicative coefficients formed by the r coor- 
dinates of the remaining two Green's functions in the series. Therefore in 
this structure of the arguments the Green's functions are equivalent from 
the point of view of gradient expansions. 

After a Fourier transform over the small variables a symmetrical 
expression in the three functions G ~'/j'~' with respect to the derivatives 
(8/SX)(8/Oq) can be obtained. Therefore the complete gradient expansion 
up to the linear order can be written as follows (the space variables have 
been included in G~'): 

cV3{ G~(og, T) Gt~(og, T)G~'(~)+ �89 G~'(og, T) G/~(og, T), G~'(~)] 

+ �89 T), G/~(og, T)] G~'(~_)}, ~ = (k, co; R, T) (8) 

where Poisson brackets have been used, Since the space coordinates (k, R) 
are integrated out in the present self-energy, gradient expansions cannot be 
performed in these variables. But in the general case both pairs of coor- 
dinates contribute in the way shown in (8). 

The second term in (8) resulted as in (3) from the (external) gradient 
expansion of the expression A-r(tt, i2)G;'(i2, t3). The last term in (8) 
resulted from the gradient expansion of the internal structure of the self- 
energy contribution A_r. Therefore this expansion and the resulting term 
can be called internal. In (8) only contributions to the self-energy diagrams 
with two Green's functions were included. Analogously one can perform 
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the gradient expansion in terms with any number of Green's functions. This 
problem is solved in the next section in detail. 

The internal gradient corrections can be easily physically understood 
from the previous example, where scattering processes can be seen as many 
consecutive events on the same center. If the system is excited by a time- 
dependent field, then scattering conditions on the center can change 
between these consecutive scattering events. Corrections to these changed 
scattering conditions are represented by the internal correction terms. For 
centers which are little smeared in space, nonzero internal gradient correc- 
tions result, even in excitation by static fields. 

3. G R A D I E N T  E X P A N S I O N S  IN GENERAL 

A gradient expansion in quantum transport equations can be unam- 
biguously represented by a series of Poisson brackets of increasing order n. 
Physically this is a consistent expansion in powers of space (time) 
inhomogeneities, since the n th-order Poisson brackets are of the same 
order of magnitude as the terms (ka)", where k is the inverse mean free 
path and a is the range of space inhomogeneity (analogous terms apply for 
the time inhomogeneity). If kcr ~ 1, then the expansion can be stopped in 
the first order (n = 1 ), which is equivalent to inclusion of both external and 
internal corrections in the GBE [see also (8), (9), and (32)]. 

Gradient expansions can be performed also in classical transport equa- 
tions describing dense systems. Such systems were first studied approximately 
by the Enskog equation, (17) which generalizes the Boltzmann equation by 
taking finite volumes of scattering particles. Since only binary collisions are 
included here, as in the BE, gradient expansions in this equation are 
analogous to the external expansions in quantum transport equations, giving 
the uncomplete quantum GBE. ~1 Later, classical dense systems were described 
by the so-called BBGKY hierarchy of kinetic equations, (~7) which can include 
multiple encounters of particles. Under some assumptions this set of equa- 
tions can be reduced to a classical generalized Boltzmann equation, (~v) which 
has scattering integrals with a structure analogous to that in the quantum 
transport equations. Therefore gradient expansions in this classical GBE are 
analogous to both the external and internal expansions leading to the 
complete quantum GBE (in the classical GBE, gradient expansions can be 
performed, while the quantum GBE is the result of the gradient expansions). 

3.1. General  Rules for  Gradient  Expansions 

We formulate a set of phenomenological rules for performing external 
and internal gradient expansions in terms as in (1) appearing in quantum 
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transport equations. From now on the gradient expansions are stopped 
after the first perturbation order (higher order contributions can be found 
analogously). The following points specify and summarize the necessary 
steps for gradient expansions in concrete terms: 

1. Analytic continuation to real times of the term is performed, to get 
an expression formed by propagators and correlation functions. 

2. Each of the self-energy functions Z" . . . . . . .  is resolved into a func- 
tional of full fermion and boson Green's functions G" . . . . . .  and 
undressed matrix elements. 

3. The whole term is transformed into CMS coordinates, and the 
uppercase coordinate X is linearized in the conjugate lowercase 
coordinate x. After a Fourier transform over the coordinates x, the 
linearization prefactors -r become derivatives 8,1, which produce a 
series of new terms. In each of these new terms just two derivatives 
appear (over X and q). The expansion should be performed on a 
hierarchical structure of levels, going more and more inside the 
structure of Z (the vertices are the landmarks). Corrections for 
higher levels are done on lower levels. All objects which depend on 
some of the coordinates must be differentiated. The lowest objects 
are the full Green's functions and undressed coupling matrix 
elements. 

4. "Parallel" objects with the same coordinates (x;, .yi) can be con- 
sidered in the derivatives as a single differentiated object, irrespec- 
tive of the order of xi and XJ' At the lower level some of the objects 
with the coordinates (xi, xi) can have still other internal coor- 
dinates, which can give further gradient corrections. 

5. "Serial" objects with arguments as in (7) are differentiated in such 
a way that differentiation of one object over an uppercase coor- 
dinate X is accompanied by differentiation of the other objects in 
a series (one by one) over the conjugate lowercase coordinate q. 
Sign prefactors depend on the sequence of objects. Realization of 
this rule for terms with many Green's functions in a series can be 
done by a second functional derivative of the term over the objects 
in the series. This derivative is multiplied by a Poisson bracket of 
the two differentiating objects in the functional derivative. 

In the previous section these rules have already been implicitly applied 
on a simple algebraic term from the self-energy [see (8)]. Analogously one 
can deal with other such algebraic terms or complex recursive terms. Before 
we come to these expansions we present a theorem. Application of the 
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above rules to scattering terms from transport equations which include a 
self-energy as in (8) gives the following formal expansion (stopped in the 
first perturbation order): 

G~(~) Z(~) + �89 G~(~_), Z(~)] + G~'(~) F,[Z](~) (9) 

Here F,. [ Z](~) represents the internal gradient expansion in the self-energy 
Z. Since the form (9) is fully general, it can be taken as a theorem: 

�9 Internal expansion of a term with a self-energy results by the sub- 
stitution of Z'(d.) by Z'(~)+ Fg[Z](() in the zeroth-order term. 

From this theorem it follows that the internal gradient expansion in terms 
with a self-energy can be directly found from the function F~[Z](~). 

3.2. Expansions of the Self-Energy 

We can concentrate on this function F;[Z](~) and evaluate if for 
several typical examples of a self-energy. 

3.2.1. Static Averaged T-Matrix Approximation. The first 
example concerns the ATA self-energy (4) for electron scattering on local 
potentials. After application of rules 1-3, the zeroth-order propagator and 
correlation parts for the self-energy in the frequency representation are 

Vo 
Z"(Og, T) = c - cO"(og, T) 

1-G"(Og, T) Vo 

Z<(O9, T)=  cO"(o9, T) G<(o9, T) 0"(o9, T ) =  cO<(og, T) 

(10) 

(11) 

Application of rule 5 to the retarded part in (5) gives the first-order 
term 

F,[Z"](~) = 62Z' i 
OG" fiG' (s 2 [ G"(r G"(~)] = 0 (12) 

since only functional derivatives of Z" over the propagator Green's func- 
tions G" can be applied here. Because the Poisson bracket from equivalent 
objects is zero, the function Fi[X"](~) does not contribute to the internal 
expansion. Analogously one can find the internal term for the correlated 
part in (6), 

822 86, 5-6-29 
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Fi[Z'<](~ x) -6G, .6G < (r [G"(r G<(r 

+ 
(52z~, < 

,~G < 6G ~ 
i (r [a<(O, G~162 

6 2 Z  < i 

+ 6G" 6G - - - - ~  (~) 2 [ G"(r G~ 

= --c Im{ [ 0"(co, T)] 20"(co, T)[ G"(co, T), G <(co, T)]} 

- s  IO~(co, T)I 4 G<(og, T) 
2 

f 
d~ 1 (OA(~, T) OA(o~, T) OA(~, T) 8A(co, T)~ 

x 2n o 2 - ~  \ &~ OT OT Oco / 

(13) 

The term Fi[Z>](co, T) can be evaluated in the same way. In the first 
expression in (13) only the nonzero functional derivatives have been con- 
sidered, which result from differentiation over Green's functions of different 
analytical structures. The order of derivatives and terms in Poisson brackets 
is the same as the order of these functions in (6). The second expression 
results by integration by parts in the Poisson bracket [G"(~), G~(~)] and 
some simple algebra. 

3.2.2. Dynamic T-Matrix Approximation. Another T-matrix 
approximation is used' L ,9) if the mutual interaction of electrons is studied. 
This approximation gives a self-energy of a very similar structure to the 
ATA self-energy in (4), but the internal dynamics is more complicated here. 
For spinless fermions the self-energy can be written as ~t) 

-r(tl, t2)= --iO(t~, t2) G(t 2, tl) (14) 

where O is the dynamic T-matrix 

{~(tl, t2)= Vt~(f l -  t2)+ VRo(tl, [3) O(i3, t2) 

Ro(tl, t2)= iG(t,, t2) G(tl, t 2) 
(15) 

In this self-energy the singular Hartree term is included (t2-t~-),  but the 
exchange terms have been neglected for simplicity. 
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Analytical continuation to real times of (15) gives the propagators and 
correlation functions (see Appendix B) 

R~(t], t2)=Gr(tt, tz) G>(tl, t2)--G<(t,, t2) G~(tl, t2) 

R~(tl, t2)=G<(tt, t2) G<(tl, t2) 
(16) 

and 

Or(tl, tz)= V 6 ( t l -  t2) + VR~o(tl, f3) 0"([3, t2) 

O<(I,, t2)= v[or(l,,  [3) R~(tr3, 12)q-O<(/, , /3) Rg(/r3, tz)] 
(17) 

After application of rule 3 in (16)-(17) the zeroth-order terms can be com- 
pleted in a form similar to the 0-functions in (10)-(11), 

O"(o9, T ) =  
V 

1-R~(og, T) V 

O <(o9, T) = O"(o9, T) Ro:(og, T) O~ T) 

(18) 

The zeroth-order contributions to the propagator and correlated parts of 
the self-energy (14) result from these functions as follows: 

Z'"(o9, T ) =  O"(o9 + o3, T)G<(o3, T)-O<(o9+cS, T)G"(~, T) 

s T ) =  O<(o9+o3, T)G>(c0, T) 
(19) 

We can continue with the internal gradient expansion in the self- 
energy (14). The separate Green's function in (19) is on the highest level, 
so it is excluded from the internal expansion. The remaining functions O' 
and O < can be independently expanded after rule 4 and give Fi [O"]( ( )  
and Fi [ O < ] (~), respectively. 

The time arguments of the objects Ro(tl, t2) in the function O(ti, t2) 
from (15) are in a series, so that the rule 5 can be directly applied. The 
expansion of the propagator function in terms of R o results in zero, 
similarly as in (12), 

,- t~20 " i 
r , [ o  ](r = 6R'o 6R~'o (~) 2 [R~(r R~,(~_)] = 0 (20) 

The internal expansions of the correlation function O < is formed by terms 
analogous to those in (13), 
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f520 < i 
F,[O < ]({) = (SR',; (SR~---- o (4) ~ [R~(4), Ro(4)]  

+ m 
(520 < 

(SRg 6Rg 
i 

(~.) ~ [R,;(4), gl;(4)] 

(5-'0 < i ,- 
-(SRI; (SR; (4)~ [Ro(O, Rg(4)] 

= -Im((Or(o.~, T)) 20"(co, T)[.R{;((.o, T), Rt;~((.o, T)]) 

--  2 IO"(eo, T)] 4 R~(o.~, T) 

f dch 1 [O Im R'~I(~, T) 0 Im R{~(a~, T) 
x 2 n c o - - ~ ,  &h OT 

O I m  R'~;(rh, T) 0 I m  Rt~(co, T)'~ 

OT &o ) (21) 

The function F; [O>(4)]  results from the change of the index " < "  by " > "  
in all places of (21). Finally, the internal expansions F~[Z"](4) and 
F~ [ Z < ] (~) can be obtained if the functions O"(4) and O < (() in the zeroth- 
order self-energy (19) are substituted by F;[O"](4) and F~[O<](4) from 
(20)-(21): 

F~[Z"](~,  T)=Fi[ O<](a~+ch, T) G"(~, T) 

F~[ Z< ](eo, T) = F~[ 6) < ](o~ + ~, T) G>(o3, T) 
(22) 

Here the fact that Fi[O"](~)=0 in (20) has been taken into account. 

3.2.3. Shielded Potential  Approx imat ion .  Particle interac- 
tions are often long range, as in the Coulomb potential. If free particles are 
available in the system, then screening can shorten the range of the inter- 
action (give a much more localized potential). The shielded potential 
approximation of the self-energy ~I~ does not include ladders, as in the 
above-studied examples, but rows of electron-hole bubbles screening the 
potential. Localization of the potential by screening has a dynamical 
character. Therefore it would be interesting to know the time-dependent 
behavior of screening in nonequilibrium processes. Recently the dynamics 
of ultrafast screening processes has been studied by NGF. c2~-'2t Close to 
equilibrium these systems can be described by the GBE, where the internal 
corrections to the screening dynamics can play an important role. 
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The shielded approximation for the self-energy can be written in the 
form c i 

s = iV~(1, 2) G(1, 2) (23) 

where the singular Fock term is included (t_, ~ t~-). In the lowest order of 
perturbation theory the screened potential V~ is related to the unscreened 
one V by the polarization function Lo as follows: 

V~.(1,2) = V ( 1 , 2 ) - V ( 1 , 3 )  Lo(3,4) V,.(4,2) 

V ( 1 , 2 ) = V ( r l -  2)6(tl-t2) 

Lo(1,2)=iG(1,2)  G(2,1) 

(24) 

The propagators and correlation functions for the polarization func- 
tion Lo in (24) can be found by the rules in Appendix B: 

L~(1 ,2)=  - {G"(1 ,2 )G<(2 ,1 )+  G<(2 ,1)G"(2 ,1) ]  

L ~ ( 1 , 2 ) =  - G < ( 1 , 2 )  G>(2, 1) 
(25) 

and the functions VI, I and V~7 result analogously to O" and O < in (17). 
Therefore after the application of rule 3 in (25), the zeroth order of the 

gradient expansion can be obtained as in (18) [the full CMS coordinates 
= (k, oJ; R, T) are considered, since the interaction is nonlocal] 

V(k) 
VI~(~')- 1 + L{;(~) V(k)' 

V.~(~)= V.~(~)L,7(~) V~(~) (26) 

Similarly, the zeroth-order gradient contributions to the propagator and 
correlated parts of the self-energy (23) yield 

Z"(k, co; R, T)= G"(k-k, r R, T) V.,>(fc, ~; R, T) 

-G<(k- fc ,  ~o-cb; R, T) V~(fc, oh; R, T) 

Z<(k, og; R, T )=G<(k -k ,  og-~; R, T) V~5(fc, cb; R, T) (27) 

The structure of the internal corrections to the self-energy (24) is also 
similar to the previous example. The main difference is that here the poten- 
tial V(k) depends on the wave vector k, so that new corrections terms are 
included: 
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32VI~ i 

32V~ i 
+ ~ ( r  ~ [L',;(r V(k)] 

" )  r 3-V,. i 
+ ~ (r ~ [ V(k), L~<r = 0 (28) 

The potential V in the last two terms is either more "right" or more "left" 
than Lo in the series (24) [see also comment below (13)]. Since the second 
functional derivative is symmetrical in the differentiating functions, these 
two terms counteract each other. In the Poisson brackets from (28) 
derivatives over space-momentum coordinates are also performed [see 
(3)], but the potential V(k) can be differentiated only over the momentum. 

The correlation function V S gives more interesting internal contribu- 
tions. We write only terms with nonzero Poisson brackets and also neglect 
terms analogous to those in (28), where both functions originate from one 
of the propagators V"'" The fact that the differentiating functions V, L'c;'" 

s ' 

originate from different full potential propagators VI;'" is symbolized by an 
index on the potentials V "~, V "'~ to show which side they originate from. 
The nonzero terms are 

r,E v~7](r 3-V, 2 
3L~ 3L o (~) [L~ L~(d'_)] 

"~V < 3- , / 

-t 3L~32V"73L o (r ~ [L[,(r L~(r 

'V." 3- 7- i 
+ 3L'o 3 V ' )  (~) 2 [L~ V(k)] 

32 v"5 2 " 

-~ 3V  (") 3Lg (r [ V(k), Lo(~) ] 

+3L~ 3V (") (r 2 [L~162 V(k)] 

32V'< (~) 2 [ V(k), Lg(~_)] 
+ 3V ") 3L,~ 

(29) 
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The first three terms on the right-hand side of (29) are analogous those in 
(21), but there are additional space-momentum derivatives present in the 
Poisson brackets here. The next two terms in (29) are evidently nonzero, 
because the derivatives and the Poisson brackets are different and nonzero. 
In the remaining two terms the Poisson brackets are opposite to each 
other, but the functional derivatives are different, because the potentials are 
taken from different sides. 

We can evaluate the above functional derivatives and collect all the 
terms: 

( 

F~[ V.,? ](~) = Im I(V~(~)) 2 V~(~) 

( , )} x [L',](~), L~(~)] --V~ [ V(k), Lo(~) ] 

r ") + ( v~(~))- Lo (~)( V., (~))" 2 

x~ [L';(~),L',;(~)]+ V--~-~[V(kI, L;(~t-L',;(~) ] (30) 

The function F; [ V~ (~)] results from the change of the index " < "  by " > "  
in all places of (30). 

As before, the internal expansions F;[s and Fi[Z<](d)  can be 
obtained if the functions V;"(~) and V~? >(~) in the zeroth-order self- 
energy (27) are substituted by F;[V;'"](~) and F~[V,5">](~) from 
(28)-(30): 

F;[Z"](k, o~; R, T)=  G"( k - k, co-  cO; R, T) F,[ V> ](/~, o5; R, T) 
(31) 

F~E Z< ](k, co; R, T)=  G<(k-k, ,  co-c6; R, T)F,E V,? ](/~, co; R, T) 

The fact that F~[ V~'"](r 0 in (28) has again been taken into account. 

4. TRANSPORT EQUATIONS WITH INTERNAL CORRECTIONS 

Internal corrections can appear in all kinds of equations derived by 
the gradien.t expansions from the Kadanoff-Baym equations. 

4.1. Generalized Boltzmann Equation 

The complete generalized Boltzmann equation with both the external 
and internal gradient corrections can be found directly when the above 
theorem is implemented in its derivation from Appendix B. The theorem 
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says that the internal terms result from the substitution of X<(>~(4) by 
X<~>)(4)+F~[X<(>I](4) in the zeroth-order terms. Therefore after a 
Fourier transform the complete GBE has the form 

(8_ �9 8U~rr(4) 8 
+ P m  V---~R-VRUr - ~  8-coJ G<(4) \01" 

- [Re Z"(4), G<(4)] + [Re G"(~), Z<(4)]  

= - (Z>(r  + F,[ Z>(4)] ) G <(4) + (Z<(4) 

+ F , [ Z < ( ~ ) ] )  G>(~) (32) 

The equation for the correlation function G>(4) can be found similarly. 
The singular (Hartree-Fock) contributions in (32) are included in the effec- 
tive potential Uon-(4). The propagator functions G"~")(4) and Z"'I(~) in (32) 
are related to the correlated parts G<(~), G>(4) and Z<(4), Z>(~) by the 
Hilbert transform (A.7). Therefore it is not necessary to find separate trans- 
port equations for these propagator functions, which would eventually 
include the nonzero internal terms Fi[Z"I"~(4)]. The internal terms in (32) 
contribute to the dynamics (not the renormalization) of the studied system, 
so that they cannot be neglected in the transport equations. Conservation 
laws for the GBE in (32) can be proven in the same way as for the exact 
Kadanoff-Baym equationsJ ~ 

In the above example of the ATA self-energy the expressions 
F;[Z<~>I(4)] in (32) should be substituted by (13). For the dynamic 
T-matrix approximation the terms (22) fulfill this role (the Hartree term 
should be taken once). In both these examples the CMS coordinates in the 
functions F ; [Z  <~> ~(co, T)] are reduced with respect to the other terms in 
(32), where ~ = (k, co; R, T). This reduction results from the local form of 
the T-matrix approximations studied here. In the shielded potential 
approximation for the self-energy the expressions F~[Z <~ > 1(4 )] from (31) 
with full CMS coordinates can be used in the GBE. In all these cases the 
complete GBE with internal correction terms becomes quite complicated. 
Nevertheless, we believe that it can be handled by approximate numerical 
methods. 

4.2. Linearized Transport Equations 

The internal gradient corrections can appear also in linearized trans- 
port equations derived from the GBE in weak dc electric fields/TM It has 
already been mentioned c231 that these linearized equations should include 
further correction terms for complicated scattering. 
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The left-hand side of the GBE in (Y32) reads, for dc electric fields, as 
follows: 

0 + 1  ( V R + e E  ~ (33) O T m  (k + e T E ~  ~-~)] G<(~) 

To diminish the explicit time dependence in (33), not present in dissipative 
systems in weak dc fields, the following transform should be performed ~t3~ 

0 0 
Q - ~ k + e E o T  , ~ - ~ + e E o .  V Q (34) 

where E o is the intensity of the dc electric field. Application of this trans- 
form to the Poisson brackets in the second line of (32) gives mixed terms 
of the following form: 

[A, B] ---, [A, B] + eE 0 - \0co o VoA (35) 

If this transform is applied also to the Poisson brackets in the internal 
corrections F i [Z  "<~> ~(~)] in (32), further new terms can result. 

When the self-energy Z'(() depends only on (co, T) variables, as in the 
space-localized scattering (4) or (14), then only the external terms 

0 Re Z"(co) OG <~ > I(k, co) O.F, <l > i(co) 0 Re G"(k, co) 
and 

Oco Ok Oco ak 

result from the transform (35). Application of this transform in the terms 
Fi[L'<r from (13) and (22) gives nothing because only k-independ- 
ent Green's functions are present there. If a nonlocal ATA self-energy ~24~ is 
used, generalizing (for neutral smeared imperfections) the local form (4), 
then new terms would result from application of the transform (35) in 
the k-dependent internal corrections F;[ Z <~ > i(~) ]. Nonlocal scattering 
results, for example, also from charged impurities, 1251 where it is reasonable 
to screen the impurity potential, t26~ similar to the self-energy (23). In both 
these examples internal and external corrections in (32) are nonzero. Since 
evaluation.of these terms is direct, we do not write them or the resulting 
complicated linearized equations. 

The question is how the internal corrections can contribute in the case 
of the linear response to weak ac electric fields, where we would expect that 
also the space-local interactions (4), (14) give new correction terms. The 
linearized transport equations in ac electric fields have been studied/~41 but 
the transform to new coordinates ~t31 was not performed. Therefore no 
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gradient corrections would seemingly contribute new terms. In fact it is 
probably hard to find the above transform in the ac case. Moreover, in the ac 
case it is not sufficient to stop the gradient expansions in the lowest orders. 
Therefore a new gauge-invariant approach has been developed c 271 to study the 
linear response to weak ac and dc electric fields where no additional transforms 
are necessary. Unfortunately, the resulting equations are still quite com- 
plicated. Recently a relatively simple consistent approach has been devised I ~'-~ 
which starts from the integral version of the Kadanoff-Baym equations. 

5. C O N C L U S I O N  

We have found new gradient corrections in the generalized Boltzmann 
equation/t~ These corrections result if the gradient expansion is performedalso 
inside the self-energy in scattering integrals of the quantum transport equa- 
tions. We call these corrections internal because they reflect the many-body 
character of scattering processes represented by the internal structure of the self- 
energy. Analogously the standard gradient corrections, ~'1 which do not take into 
account the internal structure of the self-energy, are called here external. 

The generalized Boltzmann equation with all correction terms has been 
derived. The internal corrections to the GBE have been calculated for electron 
scattering on localized static potentials, which is described by the ATA self- 
energy. More complex corrections have been obtained for interacting spinless 
fermions, where the self-energy is described either by a local T-matrix 
approximation or by a nonlocal shielded potential approximation. We believe 
that the GBE with the new correction terms might be a proper tool for studies 
of relaxation to equilibrium in systems with nontrivial electron interactions. 
We are planning to investigate some of these systems in the future. 

We have also discussed the importance of the internal corrections in 
the linearized transport equations in weak electric fields, ~ ,31 which can be 
derived from the GBE. The presence of new correction terms in the dc 
version of these equations has been clarified by examples. The internal 
corrections might be important in many other physical problems where the 
self-energy includes multiple scattering events. 

A P P E N D I X  A 

The causal fermion ( O = ~k) or boson ( O = A ) Green's functions in real 
time are defined by (Matsubara Green's functions in complex time are 
analogous)~4.5~ 

i 
G'(1, 2 ) =  - ? ,  (T[O(1)  O*(2)] ),  j - ( r j ,  t/) ( j =  1,2) (A.I) 
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Correlation functions are related to the causal function as follows: 

i l tG'(1,2)=G>(1,2)=(O(1)O*(2)) ,  t l>t2 
(A.2) 

T-ilzG'(1,2)=G<(1,2)=(O*(2)O(1)),  t l<t2 

where the upper (lower) sign applies to fermions (bosons). 
The retarded and advanced Green's functions are defined by 

i 
G"(1, 2) = - ~ 0( 1 - 2)[ G >( 1, 2) _+ G <(1, 2)] 

(A.3) 

G"( l, 2) = h 0(2 - 1)[ G >( l, 2) + G <( 1, 2)] 

where the theta function is 0 ( t )=0 ,  t < 0 ;  0 ( t )=  1, t>~0. 
In equilibrium and space-homogeneous systems the Green's functions 

depend only on the difference of coordinates (r, t) = (rt - r z ,  tt - t 2 ) ,  so that 
they can be easily Fourier transformed to the (k, 09) representation as follows: 

G(k, co )=Id"r ld t exp[ i ( co t - r . k ) ]  G(rl--r2; t,--t2) (A.4) 

Then the fermion and boson correlation functions can be expressed as c*~ 

G<(k, co) = nF, a(hco) A(k, 09) 
(A.5) 

G>(k, co)=(1 T-nF.~(hco)) A(k, 09) 

where n~.., na denote the Fermi-Dirac and Bose-Einstein distributions 

1 
n F" B( Ilco ) -- eh"'/k r-b 1 

and the spectral function is defined by 

A(k, co)- - 2 I m G " ( k ,  co)=G>(k, co)-FG<(k, co) (A.6) 

The retarded Green's function can be calculated from the spectral 
function (A'.6) as follows [(A.6)-(A.7) hold also in full CMS coordinates 
~ =  (k, co; R, T)]:  

G"(k, co) = ~ 
dch A(k, c~ ) 

~_. 2n c o -  o3 + ic~ (A.7) 

Similar formulas can be applied for the self-energy. 
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A P P E N D I X  B 

The nonequilibrium Green's functions can be found by analytical con- 
tinuation to real time of the Matsubara Green's functions in complex 
time. {t} In NGF it is often necessary to find the propagator or correlation 
part of a combination of functions. An example is the product 

A(1, 2) =B(1, 2) C(1, 2) (B.1) 

where A, B, C are one-particle causal Green's functions or self-energies. 
The required functions can be found by LW rules, ~~ where the signs and 
prefactors result from the definitions (A.2)-(A.3). We have found the 
expressions for (B.1) in two cases, where the functions A, B, C correspond 
either to fermions (F) or to bosons (B) as follows: (1) (A, B, C)=  (F, F, B) 
(an example is the electron-phonon self-energy ~5}) or (2) (A, B, C)=  
(B, F, F) [an example is the function Ro in (15)]. In both these cases the 
expressions result in 

A<(1 ,2 )=  - i B < ( 1 , 2 )  C<(1,2) 

A>(1,2)= -iB>(1,2) C>(1,2) 

A"(1,2) = - i (B"(1,2)  C > ( 1 , 2 ) - B < ( 1 , 2 )  C"(1,2)) 
(B.2) 

A"(1,2) = -i(B"(1,2) C > ( 1 , 2 ) - B < ( 1 , 2 }  C"(1,2)) 

Similarly one can find the propagators and correlation functions for the 
expression 

A(1 ,2 )=B( I ,2 )  C(2,1) (B.3) 

where the following possibilities have been chosen: (1) (A, B, C)=  (F, B, F) 
[an example is the self-energy ( 14)] or (2) (A, B, C) = (B, F, F) [an exam- 
ple is the electron-hole bubble Lo in (24)]. These possibilities, which, 
except for the order of B, F in (1), are the same as in (B.2), give the iden- 
tities [(1) for ( - ) ,  (2) for ( + ) ]  

A<(I, 2)=iB<(1,  2) C>(2, 1) 

A >(1, 2)=iB>(1,  2) C<(2, I) 

A"(1, 2)=i(B"(1, 2) C<(2, 1)T- B<(1, 2) C"(2, 1)) 
(B.4) 

A"(1, 2 )=  i(B"(1, 2) C<(2, 1) -T-B<(1, 2) C"(2, 1)) 
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The following structure appears also in most formulas: 

A(I, 2) =B(I ,  3) C(3, 2) (B.5) 

where an overbar means integration over the whole real axis of these coor- 
dinates. The same expressions result, irrespective of the types of involved 
functions, 

A <(1, 2 )=f t (1 ,  3) C<(3, 2)+ B<(1, 3) C"(3, 2) 

A >(1, 2 )=f t (1 ,  3) C>(3, 2) + B>(1, 3) C"(3, 2) 

A"(1, 2)= B"(1, 3) C"(3, 2) 

a"(1, 2)= B"(1, 3) C"(3, 2) 

(B.6) 

In the text we use the term "parallel" for the structures of arguments in 
(B. 1 )-(B.4), while the structure (B.5)-(B.6) is termed "serial." 

The Kadanoff-Baym equations can be found by application of the 
rules (B.6) to the differential Dyson equation, which can be written in two 
forms. If we take into account that (Go~) < (1, 2) =0  and ~<(1, 2)=0,  then 
the two forms of the Kadanoff-Baym equations are 

(G'o) '(1,3) G<(J, 2)=-r"(1,J)G<(J, 2)+X<(1,J)G"(3,2) 

G<( I, 3)(GI'))-' (3, 2) = G"(I, 3)X<(3, 2) + G<( I, 3) s 2) 
(B.7) 

Analogous equations can be obtained for the correlation function G >. 
The generalized Boltzmann equation ~ can be derived by subtraction 

of the two sets of equations (B.7). In the resulting quantum transport equa- 
tions for G < > it is necessary to introduce CMS coordinates and perform 
the gradient expansion up to first order. Then a Fourier transform over the 
small coordinates is performed. It is helpful to resolve the propagators G ''u 
and s from the right-hand side of (B.7) into real and imaginary parts. 
The imaginary parts of these propagators can be resolved with the help of 
the identity (A.6) (in CMS coordinates). Then the terms with equal 
correlation signs <, < and >, > fall out from the scattering side of the 
new equati6ns and the GBE easily results [see its complete form in (32)]. 
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