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Resonant tunneling in a pulsed phonon field
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We theoretically investigate resonant tunneling through a single level assisted by short LO phonon pulses.
The analysis is based on the recently developed nonequilibrium linked-cluster expdhsiad, Phys. Rev.
B 56, 7293(1997)], extended in this work to transient situations. The nonequilibrium spectral function for the
resonance displays the formation and decay of the phonon sidebands on ultrashort time scales. The time-
dependent tunneling current through the individual phonon satellites reflects this quasiparticle formation by
oscillations, whose time scale is set by the frequency of the phonon field and its harmonics. These oscillations
are washed out at elevated temperatur§6163-182809)04208-3

I. INTRODUCTION phonon frequency. To investigate the time-dependent forma-
tion of these structures caused pylsedphonon fields, we

Carrier dynamics at very short time scales displays mangeneralize the nonequilibrium linked-cluster expansion
intriguing phenomena. Basic concepts, such as energy cofiNLCE) of Ref. 12(to be referred to as | from this dto the
servation in a scattering process, must be carefully rescruttime domain(NCLET). This method is applied to study the
nized. Several recent optical experiments on femtoseconfast electron dynamics in the resonant tunneling system, in-
time scale have illustrated these effetfsAnother important  duced by the nonequilibrium phonon field with a zero coher-
example is the work of Hst et al,> where the phonon- ent part, butfast time fluctuationsThis distinguishes our
emission related replica of the initial electron distribution, work from the existing literature on time-dependent behavior
centered aE,, settle to the energf,—nfiw o only after  of mesoscopic systertis(up-to-date reviews are available,
several phonon oscillation periods. A good account of this.g., in Ref. 14 We calculate the time-dependent formation
experiment can be given with thexact one-dimensional of satellite peaks in the spectral function, induced by the
(1D) theory for the time-dependent electronic distributionphonon pulses, and evaluate the related transient resonant
function in the ultrashort time scale, due to Medetal?  tunneling current through these individual peaks.

This is the time scale for quasiparticle formation and the The paper is organized as follows. In Sec. Il the NLCET
standard Boltzmann picture, which assumes well-definegnethod for the Green functions is developed. In Sec. Il we
quasiparticles cannot be applied. Thus a proper theoreticalpply this approach to a dc-biased resonant tunneling diode,
description must account for non-Markovian effects, such ashich is exposed to a very short phonon pulse. Section IV is
retardation and/or memory effects, in the collision term. Ex-devoted to numerical results for the nonequilibrium spectra
amples of such theories are those based on thand currents.

density-matriX or nonequilibrium Green functiorfswhich

have successfully explained some of the above-mentioned

experimental features’> These theories, however, often re- Il. NONEQUILIBRIUM LINKED CLUSTER EXPANSION

sult in very complicated expressions, and a numerical evalu- IN TIMES

ation requires many approximations.

The purpose of this work is to introduce a different theo- The NLCE method combines the nonequilibrium Green
retical approach, which allows a relatively straightforwardfunction$*>*®(NGF) with the equilibrium linked cluster ex-
numerical evaluation. We apply the method to a mesoscopipansion(LCE).!” The appealing feature of this connection is
transport situation, which represents a generalization of rethat all Feynman diagrams in NGF are topologically equiva-
cent studies of resonant tunneling assisted by quasiadiabatignt to their equilibrium counterparts, which, on the other
pulses of hot LA phonon&® In addition, as shall be seen hand, are also used in the LCE methsete, e.g., pp 524—
below, the physics bears a similarity to the optical measure555 of Ref. 17, whose notation we follow closglfrhus all
ments of Ref. 3. Specifically, we consider a dc-biased resoresults for the NLCE method are readily at our disposal, and,
nant tunneling system, which is excited by short pulses ofn particular, the nonequilibrium interacting electron correla-
nonequilibrium LO phonons. Experimentally, this might be tion functionsG= can be rather simply evaluated in terms of
realized by subjecting the sample to suitable light pulses, theonequilibrium noninteracting function§g . In the first-
propagation of which is known to be accompanied by latticeorder linked cluster approximation, NLCE gives reliable re-
vibrations® sults for moderate interaction strengtfisFor electrons

It is well known, both experimental} and coupled to LO phonons, the dimensionless electron-phonon
theoretically*! that optical phonons lead to additional struc- coupling constang, defined below Eq(4), should satisfyg
ture in the measured IV curve of resonant tunneling systemss0.3— 1 (depending on the temperaturélere we general-
i.e., secondary maxima at voltages determined by the LOize NLCE to the time domaidNLCET) and use it to evalu-
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D W +G~(w,T) can be obtained in a similar fashion. It may as-
1 sume negative values, just like the quasidistributi¢e,T)
((/JV\—\ =G~ (w0, T/[G”(w,T)+G~(w,T)], which is an analog of
the Wigner function in transport. One should also note that a
i Go ts Go ts Go t2 low-order truncation of the linked cluster expansion is not

guaranteed to lead to a conserving approximation for the
quasidistribution, and, in particular, under time-dependent
situations careful checks are necessary. In the present paper,
however, all calculated quantities derive from the nonequi-

. . . . . librium spectral function, which satisfies the sum rule
ate interacting electron correlation functions in a pulsed pho-_" ) o
non field. 32 A(w,T)=1, and the conservation rules are satisfied by

The present time-dependent situation does not lead to arf§Pnstruction.
structural changes in the theory from I; it is sufficient to
consider the time coordinates; (t,) as independent instead ll. APPLICATION TO TUNNELING
of thet; —t, dependence used in steady stdtbs transient
phonon field breaks the time-translational invarigndehe
nonequilibrium electron correlation functiors=(t,,t,)
=1/4{c"(t})c(t,)) in real times can be expanded in terms
of the correlation parts of the cluster diagraw’§ '~ (ty,t),
formed by nth order terms in the interaction part of the
Hamiltonian (V, for electron-phonon coupling is in Fig).1 A. Model
Explicit expressions for these correlation parts can be ob-
tained by analytic continuation performed with the Langreth The model consists of a quantum well with one level
rules®81n full analog with the steady-state situation in |, the coupled to two wide-band reservoirs and one LO phonon
expansion foIG= is then exponentially resummed in terms Mmode. The Hamiltonian is thus
of the coefficientsF; [G~(t;,t,) can be obtained sim-
ilarlyJ:

FIG. 1. The first-order linked cluster diagra, . An analytic
continuation to real times gives the expression A0NV<(t,,t,)
used in the text.

We apply the NLCET to a resonant tunneling system
coupled to LO phonons, which was examined in steady-state
situations in I. In the present work the phonon population has
a pulse form, but the coherent part of the phonon field is
zero®

H= X  EqaClaCratEod'd

0 k, a=L,R

G=(ty,t2)= 2 Wy (ty,ty) .
=0 + 2 YealChd+H.C)+iweb b+ MdTd(b+bT).

- k;a=L,R
=G§(t1—t2)eX;{ > F:(tleZ))a 1) (4)
n=1
given by HereE, ,— r are electron energies in the Igfight) reser-
voirs, E, is the energy of the level, and the parameters
WE(ty 1) Yk.«=L R 9ive the coupling of the level to the reservoirs. The
Fo(ty,tp)= Bt Rhciay phonon energyi w, and the electron-phonon matrix element
Gg(ti—tp) M define the interaction strength= (M/% wg)?.
Under dc bias, the electrochemical potentials in the reser-
W (ty,t5) voirs u g shift in opposite directions by equal amounts.
F(tit)=—————3F7(t;,t,)% .... (2)  Then the free electron correlation functions and propagators
Go (t1—t2) for the electrons on the level &g r=t;—1,)
The noninteracting correlation functior@;~ (t,—t,) are
time homogeneous, since they correspond to the underlying d /2
nonequilibrium steady state, without the time-dependent G;(1)= _we—iwr
phonon-field. 27 (hw—Eg)?+T?/4
The correlation function irf1) can be transformed to cen-
ter of masgCMS) coordinatesr=t,—t,, T= (t;+t,/2): X[Nep(hw—p )+ Nep(hw—up)l,
G (r,T)=2, W,T(T,T):Gg(r)exp( > Fﬁ(T,T)), - do r/2
n=0 n=1 GO(T)= —e 7 2 2
2m (hw—Eg)2+T2%/4
r=t—t,, T= t142-t2. 3) X[2=ngp(fio—pu) —Nep(fio—pr) ],
After a Fourier transform over the difference time the Go®(7)=7Fi 6(=7)[Gg (7)+Gg (7)]

correlation functionsG=~(w,T) provide the spectral and )
time information byw andT, respectively. The expansion of I

i r
— 7w Eq7¥ T
the nonequilibrium spectral functioM(w,T)=G" (w,T) O(x7)e Aoz, ®)



7658 P. KRAL AND A. P. JAUHO PRB 59

where I' characterizes the coupling to the reservoirs, aswhich can be used to construct the total phonon correlation
sumed symmetric as in I. The correlation functions andfunctionsD =,D~. This construction, however, must be done
propagators for the equilibrium phonons are carefully. In Kadanoff-Baym equations, two closely related
approaches are used for constructing nonequilibrium correla-
tion functions from the nonequilibrium distributions; the KB
AnsatZ® and the GKB Ansatz®> The NLCET method is not
iterative and the Ansatz must be done on the nonequilibrium
i phonon field, which is not the product of the solution but
D7 (7)=-{e "“T1+nge(wg)]+€“Nge(wy)}, entersexternally Therefore it seems to be worth to explore

h both approaches in this situation in Appendix. We realize
that in NLCET the consistent approach is also the GKB An-
satz, giving the nonequilibrium phonon correlation functions
in (A4)

D=(7) :flfl{efinTnBE(wo) +e' 01+ nge(wo) 1},

D"3(7)=Fi0(*7)[D”7(7)—D<(7)]
2
= I% O0(x 7)sin(wqgT). (6)

2
As usual, negative frequencies, related to phonon emission,AD<(T'T):AD>(T’T)“gCOS(“’OT)

are eliminated byge(— wg) = —[1+nge(wp)]. In the pres-
ence of the pulsed phonon field, all the correlation functions

T T
separately depend on both time variablest;). Below we x| 6 T)Awo< T 2 +o(= T)Awo( T+ 2
constructthe pulsed phonon correlation functions, by ne- ®)
glecting back action of the tunneling electrons on the
phonons, and evaluate the electron correlation functions in
this field by the NLCET method. Below, we prove that the structure of arguments in

AD="7(r,T) assures causal phonon-induced observables.

B. The time-dependent phonon field

7 _ < >
As mentioned in the Introduction, subjecting a semicon- C. Time-dependentG*,G

ductor sample to light pulse can result in a propagating pho- The phonon correlation functions ii8) can be used di-
non pulse. Viewed from the resonant-tunneling diode, theectly in the NLCET method to obtain the transient electron
propagating phonon pulse implies that within a certain time-correlatorsG=,G~. We consider only the lowest order term,
interval the phonon distribution, which interacts with the di-
ode, deviates from its equilibrium value. Alternatively, a
pulsed photon-field that couples directly with the tunneling
electrons, leads to similar physits.In order to test the
NLCET method in this transient problem, we neglect, forwhich can be factorized into a steady-state contribution
simplicity, the coherent component of the excitation boson
field, which can be described by simpler methods, and con- < < <
sider only its component with ayrandgm phase. Gsteadf 7) = Go ()X F1 (7)],

A mathematical description of this physical situation can
be achieved as follows. The population of the LO phonondescribing static tunneling modified by equilibrium phonons,
field at frequencyw, suddenly increases at the tifie=0 by ~ and a time-dependent term, ¢&F; (7, T)]. In the present
np(wg) phonons and remains constant ufii= Ty, when  study, which focuses on the time-dependent changes in the
np(wg) is switched off. This process can be described by theunneling current, it is sufficient to approximal@;eady
nonequilibrium phonon distribution ~Gg , i.e., the effects due to equilibrium phonons are not
considered®

The first order linked cluster factd; in (2) is repre-
sented by the diagram in Fig. 1. The change of the related
correlation parAWj (ty,t,), induced by the phonon pulse,
is obtained with the Langreth rufe¥ [the expression for
AW (t1,t,) is analogouk

G<(T,T)~G§(T)GXF{F1<(T)+AF1<(T,T)], (9

(10

fp(wo, T)=nge(wo) +A,,(T),

A, (T =np(wo) [6(T—To)—6(T)], @)

AWf(tl,tz):sz dtaf dt,{Gg (t;—t3)[Go(tz—t4) AD(t3,t4) 2GY(ts—t)

+Gp(t1—t3) G (t3—t)) AD=(t3,t4) Gi(ta—t2) + Go(ty—t3)[ Go(tz—ts) AD(t3,t4)]1'Gg (ts—t2)}.
(11
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Here the phonon Green functiodd are given by(8), and calculated from these functions must be causal. In the next
the free electron Green functiof, are given by the nonin- section we explicitly show that this is the case for the in-
teracting solution5), respectively. The integrals if11) can  duced change in the current, if the phonon correlation func-
be easily performed numerically, if the theta functiong8h  tions (8) are used.

are taken as integration limits ifl1), so that the phonon

functions depend only on the time-translationally invariant

cosines. From the changeW (t,t,) the first order coeffi- D. Time-dependent tunneling current

cientAF(7,T) in (3) results agAF; (7,T) andAA(7,T) The expression for the time-dependent tunneling current
can be obtained similarly can be obtained by the steps used in Sec. IV of Ref. 13. In
the wide-band limit with symmetric coupling, the currents
- AWT(7,T) from the left and right reservoirs to the level satisky(t)
AFp(r,T)= N (12 —_J4(t). Therefore, it is very convenient to rearrange the
0

current in a symmetrized way with respect to these
Substitution of these coefficients (@) gives the first-order reservoirs->® because in this form the terms explicitly in-
linked cluster approximation for the time-dependent correlavolving the level populationG= cancel. Then the current
tion functions G=(7,T), G”(7,T). Physical observables assumes a very simple form

()= w = % ldT[ SNep(t—1)GA(1,1)+ G (1, 1) dnep(t—1)]

el’ [~

=7 ] dr[G¥7,T=t+7/2)—G'(7,T=t—7/2) | Snpp(—7), (13

where  ongp(t)=fdw/2me [ nep(hw—u ) —Nep(ho neglecting the shifts+ 7/2 in the time arguments of the
— ur)] is a Fourier transform of the difference of two Fermi- propagator$&s"2(r,t+ 7/2). The last approximatio(see also
Dirac distributions. The effect of this term is to average outRef. 24 is based analogously as the KB Ansatz and it is
the transient time oscillations from the propagatorsequal the lowest order approximation in gradient expansions

G"3(r,T=t*7/2) and consequently from the curreit).  in the shifts+ 7/2, applied for slow external field§:?>%°we
The averaging is stronger the broader-(w) is in energy, caution against this expansion under transient conditions,
corresponding to higher biases or temperatures. since it is inevitably accompanied by noncausality.

We next explicitly demonstrate the causality of the cur- The current can be given a more intuitive form with the
rent J(t) in (13): the current must satisfy(t<0)=J,, help of the above explicitlyt-causal spectral function

where J, is the static current before the phonon pulse. WeA(7,t). It can be expressed in terms of the frequency repre-
observe first that the term in square brackets in the secormgentation ofA(w,t) as follows:
line of (13) can be expressed in terms of the nonequilibrium

spectrallike function: el (dhow
P t)zﬂf ?A(wvt)[nFD(ﬁw_ML)_nFD(ﬁw_MR)]-

AT, )=i[G (1, T=t—7/2)—G¥(7,T=t+ 7/2)] (14)

=0(n)A(T,t—712)+ 6(— 1)A(7,t+ 7/2). It is important to distinguish the physical difference of the
Jwo functions.A andA; the functionA can be used to cal-
culate(generalizefidensities of states, but in the calculation
of transient current one must uske Substitution ofA(w,t)

by A(w,t) in the current formuld14) gives the above lowest
order term in the gradient expansion.

Note also that the time arguments have a very similar form t
the GKB Ansatz for the phonon Green functions(8). If
A(7,t<0)=Ay(7), the proof is complete. The phonon GKB
Ansatz makedW; "~ (t,,t,) causal in the times, ,t, [i.e., it
vanishes ift;<<0 or t,<<0; this can be easily checked from
Eqg. (11)], and hence the spectral functiét,,t,) is causal

in t;,t,. We examine now the first terng(7)A(r,t— 7/2) IV. NUMERICAL RESULTS
(the second term gives the same resuly construction, it
can be nonzero only i#>0. Then, for observation times
<0 (i.e., before the nonequilibrium phonon pulse is opera
tive) it holds thatt — 7/2=t,<<0 and consequently the spec-
tral function has its equilibrium formA(7,t— 7/2<0)
=Aq(t;—t,). Therefore the current is equal the steady-state
valueJ(t) =Jg, which explicitly proves its causality. On the In Fig. 2 the time evolution is shown for the function
other hand, the use of the KB Ansatz for the phonon funcA(w,T), calculated from expressig®) for a pulsed phonon
tions (A1) would break this causality od(t), similarly as field of Eq. (8). The phonon pulse is present in the time

We first investigate numerical results for the nonequilib-
rium spectral functiol\(w,T). Later the transient tunneling
“currentJ(t) is evaluated as well.

A. Nonequilibrium spectrum
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o [meV] FIG. 4. The tunneling current through the main resonance

AJy(t), calculated for an injection window of the width 4 meV

FIG. 2. The time evolution of the nonequilibrium spectral func- and for the temperature=5 K (30 K), presented by the dashed
tion A(w, T) excited by the pulse of the phonon field in the GKB (solid) line. The fast oscillations wash out with the temperature and
Ansatz, switched in the interval=(0,4T o). The formation(de-  the current gets the rectangular form.
struction) of satellites takes roughly a timg g .
spectral weight to the satellites can be understood as a po-
laron formation. For all peaks this transient process ends
approximately afl| 5, since only one-phonon processes are
present inW; . In the exact calculations of a 1D modehe
spectral and population dynamics related with the second
order satellites takes longer than in the first order satellites.
In Fig. 3 the formation process of the polaron is accompa-
nied by fast oscillations, with a time peridd~T, o/3, prac-
tically independent oig or I'. The spectral functiod(w,T)

interval T=(0,4T, o), where T, o~200 fs iwq
=20 meV) is the oscillation period of the phonon field.
Other parameters are: the level enefy~=0, the coupling
I'=8 meV, the strength of the electron-phonon coupling
=0.2, the nonequilibrium phonon populatfdmp(we)=1
and the temperature of the reservolig,=30 K. Since the
changeA(w,T) depends very little on the valués), T, and

the dc bias, we take the equilibrium valyeg=ur=0. The " 4eermines thet-causal spectral functiod(w,t), with a

. : < < .
correlation functionds™(w, T), G™(w,T) are slightly more 5 njex time behavior reflected in the tunneling curreee
sensitive to the dc bias, but their time evolution essenuaIIyFigS_ 4-6.

follows A(w,T). In A(w,T) the formation and destruction of
satellite peaks can be clearly observed. The first satellite _
peaks emerge from the main resonance and settle to the po- B. Phono-induced current

Sition w=wq in aboutT~T,o. When the pulse ends the e calculate the induced resonant curréni(t) from
evolution of A(w,T) toward the noninteractindo(w,T) is  (14) for different level positionsE,. These situations are
also oscillatory, with positive maxima at the positions of themqdeled, for simplicity, by the sam&(w,T), which is just
steady-state peaks and negative minima in between. shifted in energ}* [the transient part oA\(w,T) depends
. In Fig. 3 we show the time evolution &k(w,T) in the ey jittle on the level positioiE,]. The tunneling window is
individual phonon satellites. The main resonaneg)( first  given by the different chemical potentialg =2 meV, ug
(4A,) and second (8&,) satellites are presented by the solid, Z _ > mev. In Fig. 4 we show the induced currend,(t)

dashed, and dotted lines, respectively. The transfer of thfhrough the main resonan&,=0. The dashedsolid) lines
correspond to the temperaturds=5 K (30 K). As the

0.6 - temperature rises, the oscillations, with the approximate pe-

riod T, o, become washed out. They are quite reminiscent to

% 0.07 T
E §
o /V“’J\ ll
< o i
“ N b
E 005f ! I
< i
S Y
<

0.03 1

AL (t) [107el'/4h]

FIG. 3. The time evolution oA(w,T) in the individual peaks: 0.01

the main resonanced(), first satellite @;, multiplied by 4 and
second satellite A,, multiplied by 8 are presented by the solid,
dashed, and dotted lines. At the pulse edges fast oscillations can be FIG. 5. The tunneling current through the first satellitg, (t),
observed. calculated as in Fig. 4. The oscillations are twice faster.
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15— obtain an explicitly causal formula for the time-dependent
tunneling current.

Numerical results for the nonequilibrium electron spectral
function have been obtained by the NLCET method in the
first order cluster approximation. They reveal the formation
and collapse of satellite peaks on an ultrashort time scale.
The transient current through the individual peaks, related
with this polaron formation processes, has been calculated.
At low temperatures of the injected electrons, it shows oscil-
lations with the phonon frequency and its harmonics. At high
temperatures these oscillations become washed out, so that
the current follows the rectangular shape of the phonon
pulse. Our results indicate that considerable insight about the

FIG. 6. The tunneling current through the second satelliteMicroscopic details of electron-phonon interactions can be
AJ,(t), calculated as in Fig. 4. Very irregular evolution with beat- Obtained in the time domain. We hope that they can stimulate
ing can be observed. future experiments with short phonon pulses.

0.10¢

0.05

AJa(t) [102el'/4h]

0.00 |

t [Tro]

the “ringing” observed in a similafnoninteracting system ACKNOWLEDGMENT

in a pulsed electric fiel#® We can check the causality of the . .
current close to the pulse edges0, 4T, 5. The oscillations ; Of_ne Of_ tTe authotrsP.K.)_dwgutl)d I'll;ﬁ tto thanl;eJ. E. Sr']p%
in J(t) survive for long observation times in contrast to tor. inancial support provided by Fhotonics Researc n-
fast decay ofA(w,T) as a function ofT. The reason is ario.
simple: the distributionA(,t) for larget is connected with
A(7,T=t+7/2) for any value ofT (it picks up oscillations APPENDIX

from earlyT). The oscillations diminish because of the ran- Here we use the nonequilibrium distributiop(wo, T) in

domization coming from the width of the injection window, (7) to construct the nonequilibrium phonon correlation func-

given by the differencengp(fiw—pu) ~Nep(hw—kr),  tions AD<(7,T), AD>(r,T). The most straightforward ap-

similarly as in Ref. 13. In. re_ality this process CO.UId be proach results by replacing the equilibrium occupation fac-
shorter, since the phonon distribution for this interacting SYStorsn (wo) in (6) by fp(wg,T) and assuming thak is the
tem evolves self-consistently and thus brings some additionaj BE 0 Po

S . veragetime between; andt, [ T=(t;+t,)/2]. Equivalent,
rar_1dom|_zat|on_. A_fter the pu!se e_nds, d_amped oscillatory EVOput more compact description, uses(& both positive and
lution with a similar relaxation time brings the current back ;

. S negative frequencies, and definB — wq,T) =nge(—
to its original value. g q BS(— wo, T) =Nge(— o)

In Fig. 5 the induced current through the first satellite+A"°0(T)' where A ,,(T)=~A.,,(T). We denote j[he
AJy(t) at Ep=—20 meV is shown for the same excitation Parts of the free phonon spectral functibrrelated with
conditions. AtT=5 K the current saturates relatively slowly PoSitive/negative frequencies byAp.(w)=*2md(w
with many oscillations with an approximate periodTgf,/2. +wo)/fi and thegin(T)urler transformed counterpar'.[s by
They again disappear at higher temperatures, where the r o« (7)== (1/h)e” 7. The substitution of (£ wo, T) in
sponse closely follows the rectangular pulse form. Finally, in(®) then gives the KB AnsatZfor the transient change of the
Fig. 6 we present the induced current through the seconBhonon correlation functions and propagators
satellite AJ,(t) at Eg=—40 meV. Its time evolution is AD<(r,T)=AD>(7T)
more complex, with beatings of the approximate periods ' '

TLo,TLo/2. The oscillations are very large at both edges of 2
the pulse, where they can shortly give negative values to the ~Apx (1A, (T) =5 COLwoT) A, (T),
transient current. These negative current overshoots are es-
pecially large if the dc bias is tuned between the satellites, AD"3(r,T)=TFi 6(= N[AD” (7, T)—AD<(r,T)]=0
where they balance the positive transient values at the main ' - ' ' (Al)
resonance and satellites. Because the sum rules are fulfilled
at any time, the total current through the resonance for a verlere the producADt(r)Ain(T) is
wide window is independent on time.

Ao (A - (T =Ap 4 (7)A 4 (T)+Ap (1A, (T)

V. CONCLUSION

2
We have studied resonant tunneling through a single level =7 C0woT) A, (T), (A2)

in the presence of pulsed LO phonon field. The analysis has o

been conducted by the nonequilibrium linked clusterwhere the definition oAp.(7) andA_,, (T) are used. The
expansiont? generalized to the time domain. The distribution phonon functions ifAl) are causal in the central variable
function for the pulsed phonon field, with a zero coherentbut when applied in the NLCET method, they lead to some
component, has been constructed and the phonon correlatiomphysical results.

functions were described by the GKB Ansatz. A detailed It has been known since the work of Lipavsky al,?
examination shows that this Ansatz is necessary in order tthat the KB Ansatz does not fulfill the requirement of cau-
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sality of the correlation functions in the individual times Here the spectral functionAp(7) in the propagators
ti,t,[i.e., AD=7(7,T)#0 for Te (0,Ty) evenift, ort,are  D"?(7)=Fi (= 7)Ap(7) is again resolved in the positive/
outof (0,Tg)]. The problem results from identification of the negative frequency paris, . (7) and the related propagator
time T in fp(wo,T) with the central time ;+1t,)/2. The  componentsD.%(t;—t,) are multiplied by the factors
simplest correction is called the GKB Ans&fzand we show A.,(t12) asin(A2). This gives the functiondD =~ (r,T)
in the main text that it can give plausible results also in they, the form
NLCET method.

In this Ansatz, the phonon spectrudy(7)=i[D'(t; _ -
—t,)—D?¥(t;—ty)] from the nonequilibrium correlation AD™(7,T)=AD"(7,T)
functionsAD< and AD~ is resolved into two components,

propagating forwards and backwards in tim'(D?), re- %E ( _ Z)
spectively. These are multiplied by the population change h cos wo7) 0(¢)Aw0 T 2

Aiwo with the initial time coordinatedq,t,, pertinent to

each of the two terms, instead of the center of mass _ T

(ty+1,)/2 TO(=71)A,| T+ > (A4)

AD™(ty,t) ~iDL(t1—tr) AL, (o)
They reduce to the KB Ansatz frof\1) if the shifts = 7/2

~iAx(t) D2(ty—ta). (A3 of the step functiom\, (T+ 7/2) are neglected.
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