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Resonant tunneling in a pulsed phonon field
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We theoretically investigate resonant tunneling through a single level assisted by short LO phonon pulses.
The analysis is based on the recently developed nonequilibrium linked-cluster expansion@P. Král, Phys. Rev.
B 56, 7293~1997!#, extended in this work to transient situations. The nonequilibrium spectral function for the
resonance displays the formation and decay of the phonon sidebands on ultrashort time scales. The time-
dependent tunneling current through the individual phonon satellites reflects this quasiparticle formation by
oscillations, whose time scale is set by the frequency of the phonon field and its harmonics. These oscillations
are washed out at elevated temperatures.@S0163-1829~99!04208-3#
an
co
ru
o

n

hi

on

th
ne
tic
a
x
th

n
e-
al

o
rd
p
r

ba
n
r
s
o

be
th
ic

c-
m
LO

ma-

ion

e
in-

er-

ior
,
n

the
nant

T
we
de,
is

tra

en

is
a-
er

nd,
la-
of

e-

non
I. INTRODUCTION

Carrier dynamics at very short time scales displays m
intriguing phenomena. Basic concepts, such as energy
servation in a scattering process, must be carefully resc
nized. Several recent optical experiments on femtosec
time scale have illustrated these effects.1,2 Another important
example is the work of Fu¨rst et al.,3 where the phonon-
emission related replica of the initial electron distributio
centered atE0 , settle to the energyE02n\vLO only after
several phonon oscillation periods. A good account of t
experiment can be given with theexact one-dimensional
~1D! theory for the time-dependent electronic distributi
function in the ultrashort time scale, due to Medenet al.4

This is the time scale for quasiparticle formation and
standard Boltzmann picture, which assumes well-defi
quasiparticles cannot be applied. Thus a proper theore
description must account for non-Markovian effects, such
retardation and/or memory effects, in the collision term. E
amples of such theories are those based on
density-matrix5 or nonequilibrium Green functions,6 which
have successfully explained some of the above-mentio
experimental features.1,2 These theories, however, often r
sult in very complicated expressions, and a numerical ev
ation requires many approximations.

The purpose of this work is to introduce a different the
retical approach, which allows a relatively straightforwa
numerical evaluation. We apply the method to a mesosco
transport situation, which represents a generalization of
cent studies of resonant tunneling assisted by quasiadia
pulses of hot LA phonons.7,8 In addition, as shall be see
below, the physics bears a similarity to the optical measu
ments of Ref. 3. Specifically, we consider a dc-biased re
nant tunneling system, which is excited by short pulses
nonequilibrium LO phonons. Experimentally, this might
realized by subjecting the sample to suitable light pulses,
propagation of which is known to be accompanied by latt
vibrations.9

It is well known, both experimentally10 and
theoretically,11 that optical phonons lead to additional stru
ture in the measured IV curve of resonant tunneling syste
i.e., secondary maxima at voltages determined by the
PRB 590163-1829/99/59~11!/7656~7!/$15.00
y
n-
ti-
nd

,

s

e
d
al
s
-
e

ed

u-

-

ic
e-
tic

e-
o-
f

e
e

s,
-

phonon frequency. To investigate the time-dependent for
tion of these structures caused bypulsedphonon fields, we
generalize the nonequilibrium linked-cluster expans
~NLCE! of Ref. 12~to be referred to as I from this on! to the
time domain~NCLET!. This method is applied to study th
fast electron dynamics in the resonant tunneling system,
duced by the nonequilibrium phonon field with a zero coh
ent part, butfast time fluctuations. This distinguishes our
work from the existing literature on time-dependent behav
of mesoscopic systems13 ~up-to-date reviews are available
e.g., in Ref. 14!. We calculate the time-dependent formatio
of satellite peaks in the spectral function, induced by
phonon pulses, and evaluate the related transient reso
tunneling current through these individual peaks.

The paper is organized as follows. In Sec. II the NLCE
method for the Green functions is developed. In Sec. III
apply this approach to a dc-biased resonant tunneling dio
which is exposed to a very short phonon pulse. Section IV
devoted to numerical results for the nonequilibrium spec
and currents.

II. NONEQUILIBRIUM LINKED CLUSTER EXPANSION
IN TIMES

The NLCE method combines the nonequilibrium Gre
functions6,15,16~NGF! with the equilibrium linked cluster ex-
pansion~LCE!.17 The appealing feature of this connection
that all Feynman diagrams in NGF are topologically equiv
lent to their equilibrium counterparts, which, on the oth
hand, are also used in the LCE method~see, e.g., pp 524–
555 of Ref. 17, whose notation we follow closely!. Thus all
results for the NLCE method are readily at our disposal, a
in particular, the nonequilibrium interacting electron corre
tion functionsG, can be rather simply evaluated in terms
nonequilibrium noninteracting functionsG0

, . In the first-
order linked cluster approximation, NLCE gives reliable r
sults for moderate interaction strengths.12 For electrons
coupled to LO phonons, the dimensionless electron-pho
coupling constantg, defined below Eq.~4!, should satisfyg
'0.321 ~depending on the temperature!. Here we general-
ize NLCE to the time domain~NLCET! and use it to evalu-
7656 ©1999 The American Physical Society
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PRB 59 7657RESONANT TUNNELING IN A PULSED PHONON FIELD
ate interacting electron correlation functions in a pulsed p
non field.

The present time-dependent situation does not lead to
structural changes in the theory from I; it is sufficient
consider the time coordinates (t1 ,t2) as independent instea
of the t12t2 dependence used in steady states~the transient
phonon field breaks the time-translational invariance!. The
nonequilibrium electron correlation functionG,(t1 ,t2)
[1/\^c†(t1)c(t2)& in real times can be expanded in term
of the correlation parts of the cluster diagramsWn

,,.(t1 ,t2),
formed by nth order terms in the interaction part of th
Hamiltonian (W1 for electron-phonon coupling is in Fig. 1!.
Explicit expressions for these correlation parts can be
tained by analytic continuation performed with the Langre
rules.6,18 In full analog with the steady-state situation in I, th
expansion forG, is then exponentially resummed in term
of the coefficientsFn

, @G.(t1 ,t2) can be obtained sim
ilarly#:

G,~ t1 ,t2!5 (
n50

`

Wn
,~ t1 ,t2!

5G0
,~ t12t2!expS (

n51

`

Fn
,~ t1 ,t2!D , ~1!

given by

F1
,~ t1 ,t2!5

W1
,~ t1 ,t2!

G0
,~ t12t2!

,

F2
,~ t1 ,t2!5

W2
,~ t1 ,t2!

G0
,~ t12t2!

2 1
2 F1

,~ t1 ,t2!2, . . . . ~2!

The noninteracting correlation functionsG0
,,.(t12t2) are

time homogeneous, since they correspond to the underl
nonequilibrium steady state, without the time-depende
phonon-field.

The correlation function in~1! can be transformed to cen
ter of mass~CMS! coordinatest5t12t2 , T5 (t11t2/2) :

G,~t,T!5 (
n50

`

Wn
,~t,T!5G0

,~t!expS (
n51

`

Fn
,~t,T!D ,

t5t12t2 , T5
t11t2

2
. ~3!

After a Fourier transform over the difference timet, the
correlation functionsG,,.(v,T) provide the spectral and
time information byv andT, respectively. The expansion o
the nonequilibrium spectral functionA(v,T)5G.(v,T)

FIG. 1. The first-order linked cluster diagramW1 . An analytic
continuation to real times gives the expression forDW,(t1 ,t2)
used in the text.
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1G,(v,T) can be obtained in a similar fashion. It may a
sume negative values, just like the quasidistributionf (v,T)
5G,(v,T)/@G.(v,T)1G,(v,T)#, which is an analog of
the Wigner function in transport. One should also note tha
low-order truncation of the linked cluster expansion is n
guaranteed to lead to a conserving approximation for
quasidistribution, and, in particular, under time-depend
situations careful checks are necessary. In the present p
however, all calculated quantities derive from the noneq
librium spectral function, which satisfies the sum ru

* dv
2p A(v,T)51, and the conservation rules are satisfied

construction.

III. APPLICATION TO TUNNELING

We apply the NLCET to a resonant tunneling syste
coupled to LO phonons, which was examined in steady-s
situations in I. In the present work the phonon population h
a pulse form, but the coherent part of the phonon field
zero.19

A. Model

The model consists of a quantum well with one lev
coupled to two wide-band reservoirs and one LO phon
mode. The Hamiltonian is thus

H5 (
k; a5L,R

Ek,ack,a
† ck,a1E0d†d

1 (
k;a5L,R

gk;a~ck,a
† d1H.c.!1\v0b†b1Md†d~b1b†!.

~4!

HereEk,a5L,R are electron energies in the left~right! reser-
voirs, E0 is the energy of the level, and the paramete
gk,a5L,R give the coupling of the level to the reservoirs. Th
phonon energy\v0 and the electron-phonon matrix eleme
M define the interaction strengthg5(M /\v0)2.

Under dc bias, the electrochemical potentials in the res
voirs mL,R shift in opposite directions by equal amount
Then the free electron correlation functions and propaga
for the electrons on the level are20 (t5t12t2)

G0
,~t!5E dv

2p
e2 ivt

G/2

~\v2E0!21G2/4

3@nFD~\v2mL!1nFD~\v2mR!#,

G0
.~t!5E dv

2p
e2 ivt

G/2

~\v2E0!21G2/4

3@22nFD~\v2mL!2nFD~\v2mR!#,

G0
r ,a~t!57 i u~6t!@G0

.~t!1G0
,~t!#

57
i

\
u~6t!e2

i
\ E0t7

G
2\ t, ~5!
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7658 PRB 59P. KRÁL AND A. P. JAUHO
where G characterizes the coupling to the reservoirs,
sumed symmetric as in I. The correlation functions a
propagators for the equilibrium phonons are

D,~t!5
i

\
$e2 iv0tnBE~v0!1eiv0t@11nBE~v0!#%,

D.~t!5
i

\
$e2 iv0t@11nBE~v0!#1eiv0tnBE~v0!%,

Dr ,a~t!57 i u~6t!@D.~t!2D,~t!#

57
2

\
u~6t!sin~v0t!. ~6!

As usual, negative frequencies, related to phonon emiss
are eliminated bynBE(2v0)52@11nBE(v0)#. In the pres-
ence of the pulsed phonon field, all the correlation functio
separately depend on both time variables (t1 ,t2). Below we
construct the pulsed phonon correlation functions, by n
glecting back action of the tunneling electrons on t
phonons, and evaluate the electron correlation function
this field by the NLCET method.

B. The time-dependent phonon field

As mentioned in the Introduction, subjecting a semico
ductor sample to light pulse can result in a propagating p
non pulse. Viewed from the resonant-tunneling diode,
propagating phonon pulse implies that within a certain tim
interval the phonon distribution, which interacts with the d
ode, deviates from its equilibrium value. Alternatively,
pulsed photon-field that couples directly with the tunneli
electrons, leads to similar physics.21 In order to test the
NLCET method in this transient problem, we neglect,
simplicity, the coherent component of the excitation bos
field, which can be described by simpler methods, and c
sider only its component with a random phase.

A mathematical description of this physical situation c
be achieved as follows. The population of the LO phon
field at frequencyv0 suddenly increases at the timeT50 by
nP(v0) phonons and remains constant untilT5T0 , when
nP(v0) is switched off. This process can be described by
nonequilibrium phonon distribution

f P~v0 ,T!5nBE~v0!1Dv0
~T!,

Dv0
~T!5nP~v0! @u~T2T0!2u~T!#, ~7!
-
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which can be used to construct the total phonon correla
functionsD,,D.. This construction, however, must be don
carefully. In Kadanoff-Baym equations, two closely relat
approaches are used for constructing nonequilibrium corr
tion functions from the nonequilibrium distributions; the K
Ansatz15 and the GKB Ansatz.22 The NLCET method is not
iterative and the Ansatz must be done on the nonequilibr
phonon field, which is not the product of the solution b
entersexternally. Therefore it seems to be worth to explo
both approaches in this situation in Appendix. We real
that in NLCET the consistent approach is also the GKB A
satz, giving the nonequilibrium phonon correlation functio
in ~A4!

DD,~t,T!5DD.~t,T!'
2

\
cos~v0t!

3Fu~t!Dv0S T2
t

2D1u~2t!Dv0S T1
t

2D G .
~8!

Below, we prove that the structure of arguments
DD,,.(t,T) assures causal phonon-induced observable

C. Time-dependentG<,G>

The phonon correlation functions in~8! can be used di-
rectly in the NLCET method to obtain the transient electr
correlatorsG,,G.. We consider only the lowest order term

G,~t,T!'G0
,~t!exp@F1

,~t!1DF1
,~t,T!#, ~9!

which can be factorized into a steady-state contribution

Gsteady
, ~t!5G0

,~t!exp@F1
,~t!#, ~10!

describing static tunneling modified by equilibrium phonon
and a time-dependent term, exp@DF1

,(t,T)#. In the present
study, which focuses on the time-dependent changes in
tunneling current, it is sufficient to approximateGsteady

,

'G0
, , i.e., the effects due to equilibrium phonons are n

considered.23

The first order linked cluster factorW1 in ~2! is repre-
sented by the diagram in Fig. 1. The change of the rela
correlation partDW1

,(t1 ,t2), induced by the phonon pulse
is obtained with the Langreth rules6,18 @the expression for
DW1

.(t1 ,t2) is analogous#:
DW1
,~ t1 ,t2!5M2E dt3E dt4$G0

,~ t12t3!@G0~ t32t4!DD~ t3 ,t4!#aG0
a~ t42t2!

1G0
r ~ t12t3!G0

,~ t32t4!DD,~ t3 ,t4!G0
a~ t42t2!1G0

r ~ t12t3!@G0~ t32t4!DD~ t3 ,t4!# rG0
,~ t42t2!%.

~11!
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Here the phonon Green functionsDD are given by~8!, and
the free electron Green functionsG0 are given by the nonin-
teracting solution~5!, respectively. The integrals in~11! can
be easily performed numerically, if the theta functions in~8!
are taken as integration limits in~11!, so that the phonon
functions depend only on the time-translationally invaria
cosines. From the changeDW1

,(t1 ,t2) the first order coeffi-
cient DF1

,(t,T) in ~3! results as@DF1
.(t,T) andDA1(t,T)

can be obtained similarly#:

DF1
,~t,T!5

DW1
,~t,T!

G0
,~t!

. ~12!

Substitution of these coefficients in~9! gives the first-order
linked cluster approximation for the time-dependent corre
tion functions G,(t,T), G.(t,T). Physical observable
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calculated from these functions must be causal. In the n
section we explicitly show that this is the case for the
duced change in the current, if the phonon correlation fu
tions ~8! are used.

D. Time-dependent tunneling current

The expression for the time-dependent tunneling curr
can be obtained by the steps used in Sec. IV of Ref. 13
the wide-band limit with symmetric coupling, the curren
from the left and right reservoirs to the level satisfyJL(t)
52JR(t). Therefore, it is very convenient to rearrange t
current in a symmetrized way with respect to the
reservoirs,13,8 because in this form the terms explicitly in
volving the level populationG, cancel. Then the curren
assumes a very simple form
J~ t !5
JL~ t !2JR~ t !

2
5

eG

4i E2`

`

d t̄@dnFD~ t2 t̄ !Ga~ t̄ ,t !1Gr~ t, t̄ !dnFD~ t̄ 2t !#

5
eG

4i E2`

`

dt@Ga~t,T5t1t/2!2Gr~t,T5t2t/2!#dnFD~2t!, ~13!
is
ons

ns,

e

re-

e
-
n

t
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n

e

where dnFD(t)5*dv/2pe2 ivt@nFD(\v2mL)2nFD(\v
2mR)# is a Fourier transform of the difference of two Ferm
Dirac distributions. The effect of this term is to average o
the transient time oscillations from the propagato
Gr ,a(t,T5t6t/2) and consequently from the currentJ(t).
The averaging is stronger the broaderdnFD(v) is in energy,
corresponding to higher biases or temperatures.

We next explicitly demonstrate the causality of the c
rent J(t) in ~13!: the current must satisfyJ(t,0)5J0 ,
whereJ0 is the static current before the phonon pulse. W
observe first that the term in square brackets in the sec
line of ~13! can be expressed in terms of the nonequilibriu
spectrallike function:

A~t,t ![ i @Gr~t,T5t2t/2!2Ga~t,T5t1t/2!#

5u~t!A~t,t2t/2!1u~2t!A~t,t1t/2!.

Note also that the time arguments have a very similar form
the GKB Ansatz for the phonon Green functions in~8!. If
A(t,t,0)5A0(t), the proof is complete. The phonon GK
Ansatz makesDW1

,,.(t1 ,t2) causal in the timest1 ,t2 @i.e., it
vanishes ift1,0 or t2,0; this can be easily checked from
Eq. ~11!#, and hence the spectral functionA(t1 ,t2) is causal
in t1 ,t2 . We examine now the first term,u(t)A(t,t2t/2)
~the second term gives the same result!. By construction, it
can be nonzero only ift.0. Then, for observation timest
,0 ~i.e., before the nonequilibrium phonon pulse is ope
tive! it holds thatt2t/2[t2,0 and consequently the spe
tral function has its equilibrium form,A(t,t2t/2,0)
5A0(t12t2). Therefore the current is equal the steady-st
valueJ(t)5J0 , which explicitly proves its causality. On th
other hand, the use of the KB Ansatz for the phonon fu
tions ~A1! would break this causality ofJ(t), similarly as
t
s

-

e
nd

o

-

e

-

neglecting the shifts6t/2 in the time arguments of the
propagatorsGr ,a(t,t6t/2). The last approximation~see also
Ref. 24! is based analogously as the KB Ansatz and it
equal the lowest order approximation in gradient expansi
in the shifts6t/2, applied for slow external fields.16,25,26We
caution against this expansion under transient conditio
since it is inevitably accompanied by noncausality.

The current can be given a more intuitive form with th
help of the above explicitlyt-causal spectral function
A(t,t). It can be expressed in terms of the frequency rep
sentation ofA(v,t) as follows:

J~ t !5
eG

4\E d\v

2p
A~v,t !@nFD~\v2mL!2nFD~\v2mR!#.

~14!

It is important to distinguish the physical difference of th
two functionsA and A; the functionA can be used to cal
culate~generalized! densities of states, but in the calculatio
of transient current one must useA. Substitution ofA(v,t)
by A(v,t) in the current formula~14! gives the above lowes
order term in the gradient expansion.

IV. NUMERICAL RESULTS

We first investigate numerical results for the nonequil
rium spectral functionA(v,T). Later the transient tunneling
currentJ(t) is evaluated as well.

A. Nonequilibrium spectrum

In Fig. 2 the time evolution is shown for the functio
A(v,T), calculated from expression~9! for a pulsed phonon
field of Eq. ~8!. The phonon pulse is present in the tim
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interval T5(0,4TLO), where TLO'200 fs (\v0

520 meV) is the oscillation period of the phonon fiel
Other parameters are: the level energyE050, the coupling
G58 meV, the strength of the electron-phonon couplingg
50.2, the nonequilibrium phonon population23 nP(v0)51
and the temperature of the reservoirsTlatt530 K. Since the
changeA(v,T) depends very little on the valuesE0 ,Tlatt and
the dc bias, we take the equilibrium valuesmL5mR50. The
correlation functionsG,(v,T), G.(v,T) are slightly more
sensitive to the dc bias, but their time evolution essentia
follows A(v,T). In A(v,T) the formation and destruction o
satellite peaks can be clearly observed. The first sate
peaks emerge from the main resonance and settle to the
sition v5v0 in about T'TLO . When the pulse ends th
evolution of A(v,T) toward the noninteractingA0(v,T) is
also oscillatory, with positive maxima at the positions of t
steady-state peaks and negative minima in between.

In Fig. 3 we show the time evolution ofA(v,T) in the
individual phonon satellites. The main resonance (A0), first
(4A1) and second (8A2) satellites are presented by the sol
dashed, and dotted lines, respectively. The transfer of

FIG. 2. The time evolution of the nonequilibrium spectral fun
tion A(v,T) excited by the pulse of the phonon field in the GK
Ansatz, switched in the intervalT5(0,4TLO). The formation~de-
struction! of satellites takes roughly a timeTLO .

FIG. 3. The time evolution ofA(v,T) in the individual peaks:
the main resonance (A0), first satellite (A1 , multiplied by 4! and
second satellite (A2 , multiplied by 8! are presented by the solid
dashed, and dotted lines. At the pulse edges fast oscillations ca
observed.
y

te
o-

,
e

spectral weight to the satellites can be understood as a
laron formation. For all peaks this transient process e
approximately atTLO , since only one-phonon processes a
present inW1 . In the exact calculations of a 1D model,3 the
spectral and population dynamics related with the sec
order satellites takes longer than in the first order satelli
In Fig. 3 the formation process of the polaron is accom
nied by fast oscillations, with a time periodTf'TLO/3, prac-
tically independent ong or G. The spectral functionA(v,T)
determines thet-causal spectral functionA(v,t), with a
complex time behavior reflected in the tunneling current~see
Figs. 4–6!.

B. Phono-induced current

We calculate the induced resonant currentDJ(t) from
~14! for different level positionsE0 . These situations are
modeled, for simplicity, by the sameA(v,T), which is just
shifted in energy11 @the transient part ofA(v,T) depends
very little on the level positionE0]. The tunneling window is
given by the different chemical potentialsmL52 meV, mR
522 meV. In Fig. 4 we show the induced currentDJ0(t)
through the main resonanceE050. The dashed~solid! lines
correspond to the temperaturesT55 K (30 K). As the
temperature rises, the oscillations, with the approximate
riod TLO , become washed out. They are quite reminiscen

be

FIG. 4. The tunneling current through the main resonan
DJ0(t), calculated for an injection window of the width 4 me
and for the temperatureT55 K (30 K), presented by the dashe
~solid! line. The fast oscillations wash out with the temperature a
the current gets the rectangular form.

FIG. 5. The tunneling current through the first satelliteDJ1(t),
calculated as in Fig. 4. The oscillations are twice faster.
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the ‘‘ringing’’ observed in a similar~noninteracting! system
in a pulsed electric field.13 We can check the causality of th
current close to the pulse edgest50, 4TLO . The oscillations
in J(t) survive for long observation timest, in contrast to
fast decay ofA(v,T) as a function ofT. The reason is
simple: the distributionA(t,t) for large t is connected with
A(t,T5t6t/2) for any value ofT ~it picks up oscillations
from earlyT). The oscillations diminish because of the ra
domization coming from the width of the injection window
given by the differencenFD(\v2mL)2nFD(\v2mR),
similarly as in Ref. 13. In reality this process could
shorter, since the phonon distribution for this interacting s
tem evolves self-consistently and thus brings some additio
randomization. After the pulse ends, damped oscillatory e
lution with a similar relaxation time brings the current ba
to its original value.

In Fig. 5 the induced current through the first satell
DJ1(t) at E05220 meV is shown for the same excitatio
conditions. AtT55 K the current saturates relatively slow
with many oscillations with an approximate period ofTLO/2.
They again disappear at higher temperatures, where the
sponse closely follows the rectangular pulse form. Finally
Fig. 6 we present the induced current through the sec
satellite DJ2(t) at E05240 meV. Its time evolution is
more complex, with beatings of the approximate perio
TLO ,TLO/2. The oscillations are very large at both edges
the pulse, where they can shortly give negative values to
transient current. These negative current overshoots are
pecially large if the dc bias is tuned between the satelli
where they balance the positive transient values at the m
resonance and satellites. Because the sum rules are ful
at any time, the total current through the resonance for a v
wide window is independent on time.

V. CONCLUSION

We have studied resonant tunneling through a single le
in the presence of pulsed LO phonon field. The analysis
been conducted by the nonequilibrium linked clus
expansion,12 generalized to the time domain. The distributio
function for the pulsed phonon field, with a zero cohere
component, has been constructed and the phonon correl
functions were described by the GKB Ansatz. A detail
examination shows that this Ansatz is necessary in orde

FIG. 6. The tunneling current through the second sate
DJ2(t), calculated as in Fig. 4. Very irregular evolution with bea
ing can be observed.
-
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obtain an explicitly causal formula for the time-depende
tunneling current.

Numerical results for the nonequilibrium electron spect
function have been obtained by the NLCET method in
first order cluster approximation. They reveal the formati
and collapse of satellite peaks on an ultrashort time sc
The transient current through the individual peaks, rela
with this polaron formation processes, has been calcula
At low temperatures of the injected electrons, it shows os
lations with the phonon frequency and its harmonics. At h
temperatures these oscillations become washed out, so
the current follows the rectangular shape of the phon
pulse. Our results indicate that considerable insight about
microscopic details of electron-phonon interactions can
obtained in the time domain. We hope that they can stimu
future experiments with short phonon pulses.
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APPENDIX

Here we use the nonequilibrium distributionf P(v0 ,T) in
~7! to construct the nonequilibrium phonon correlation fun
tions DD,(t,T), DD.(t,T). The most straightforward ap
proach results by replacing the equilibrium occupation f
tors nBE(v0) in ~6! by f P(v0 ,T) and assuming thatT is the
averagetime betweent1 andt2 @T5(t11t2)/2#. Equivalent,
but more compact description, uses in~6! both positive and
negative frequencies, and definesf P(2v0 ,T)5nBE(2v0)
1D2v0

(T), where D2v0
(T)52Dv0

(T). We denote the
parts of the free phonon spectral function17 related with
positive/negative frequencies byAD6(v)562pd(v
7v0)/\ and their Fourier transformed counterparts
AD6(t)56(1/\)e7 iv0t. The substitution off P(6v0 ,T) in
~6! then gives the KB Ansatz15 for the transient change of th
phonon correlation functions and propagators

DD,~t,T!5DD.~t,T!

'AD6~t!D6v0
~T!5

2

\
cos~v0t!Dv0

~T!,

DDr ,a~t,T!57 i u~6t!@DD.~t,T!2DD,~t,T!#50.
~A1!

Here the productAD6(t)D6v0
(T) is

AD6~t!D6v0
~T!5AD1~t!Dv0

~T!1AD2~t!D2v0
~T!

5
2

\
cos~v0t!Dv0

~T!, ~A2!

where the definition ofAD6(t) andD2v0
(T) are used. The

phonon functions in~A1! are causal in the central variableT,
but when applied in the NLCET method, they lead to so
unphysical results.

It has been known since the work of Lipavsky´ et al.,22

that the KB Ansatz does not fulfill the requirement of ca
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sality of the correlation functions in the individual time
t1 ,t2 @i.e.,DD,,.(t,T)Þ0 for TP(0,T0) even if t1 or t2 are
out of (0,T0)]. The problem results from identification of th
time T in f P(v0 ,T) with the central time (t11t2)/2. The
simplest correction is called the GKB Ansatz,22 and we show
in the main text that it can give plausible results also in
NLCET method.

In this Ansatz, the phonon spectrumAD(t)5 i @Dr(t1
2t2)2Da(t12t2)# from the nonequilibrium correlation
functionsDD, andDD. is resolved into two components
propagating forwards and backwards in time (Dr ,Da), re-
spectively. These are multiplied by the population chan
D6v0

with the initial time coordinatest1 ,t2 , pertinent to
each of the two terms, instead of the center of m
(t11t2)/2

DD,~ t1 ,t2!' iD 6
r ~ t12t2!D6v0

~ t2!

2 iD6v0
~ t1! D6

a ~ t12t2!. ~A3!
in-
lz

n

,

.
et

s

.

.
.

e

e

s

Here the spectral functionAD(t) in the propagators
Dr ,a(t)57 i u(6t)AD(t) is again resolved in the positive
negative frequency partsAD6(t) and the related propagato
componentsD6

r ,a(t12t2) are multiplied by the factors
D6v0

(t1,2) as in~A2!. This gives the functionsDD,,.(t,T)
in the form

DD,~t,T!5DD.~t,T!

'
2

\
cos~v0t!Fu~t!Dv0S T2

t

2D
1u~2t!Dv0S T1

t

2D G . ~A4!

They reduce to the KB Ansatz from~A1! if the shifts6t/2
of the step functionDv0

(T6t/2) are neglected.
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