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Nonequilibrium linked cluster expansion for steady-state quantum transport
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We generalize the linked cluster expansion of Matsubara Green functions into nonequilibrium situations.
This allows us to compute nonequilibrium correlation functions and, consequently, physical observables for
interacting quantum systems with intermediate interaction strengths. As a specific example, we study nonlinear
dc transport in a resonant tunneling system with electron-phonon interaction. The first- and second-order
nonequilibrium cluster approximations are explicitly evaluated. The results are compared with those obtained
by the standard nonequilibrium Green functions approach within the Migdal approximation for the self-energy
and in the low-density limit also with the known exact solution. For moderately strong electron-phonon
interactions the first-order linked cluster approximation is more precise than the Migdal approach. The second-
order approximation appears to be problematic in the presence of the Fermi sea.@S0163-1829~97!02435-1#
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I. INTRODUCTION

Presently, systems of reduced dimensionality are stud
intensively, where strongly nonequilibrium conditions can
easily maintained by weak external fields and where inte
tions become more important due to confinement of the e
tron states. A generic example is resonant tunneling syst
in the presence of electron-phonon interaction. The exp
mental observation of phonon-mediated resonant chann1

~sidebands! in these low-dimensional structures has stim
lated numerous theoretical studies,2–4 which address also in
termediary strong electron-phonon interactions. These m
erately interacting systems have been less investig
theoretically in general steady-state nonequilibrium con
tions.

Quantum systems out of equilibrium can be described
nonequilibrium Green functions~NGF’s! introduced by
Kadanoff and Baym5 or Keldysh.6 The transport equation
for nonequilibrium correlation functions of this method ha
been used to describe various nonequilibrium systems,
cluding the resonant tunneling assisted by phonons.7–12 In
practice, however, NGF’s are often limited to perturbat
many-particle approximations, characterized by some s
sets of Feynman diagrams, and thus restricted to relati
weak many-body interactions.13 Nevertheless, recently th
NGF method has been successfully applied to some stro
interacting quantum systems in nonequilibrium.14–17

Some intermediary interacting many-particle systems
equilibrium can be described by a linked cluster expansio18

~LCE!. Evaluation of the Green functions in this method
based on an approximate summation of the Feynman
grams, different from the Dyson equation. In systems with
electron-phonon interaction19,20 it was found that the method
works rigorously only in the presence of one~Fermi! particle
interacting with bosons,18 analogously to the path integra
evaluation of physical properties of polarons.21 However, the
possibility is left open that in a restricted region of para
eters the method gives reasonable results also for sys
with a finite density of particles.

In such a region of parameters the equilibrium LC
method for Matsubara Green functions can be generalize
560163-1829/97/56~12!/7293~11!/$10.00
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nonequilibrium by analytical continuation, just as in the NG
method.5 Following this way we obtain a hybrid method
nonequilibrium linked cluster expansion~NLCE!, which
combines features of both the NGF and LCE methods.
particular, the approach can describe some nonequilibr
quantum systems with moderately strong interactions.

As an illustration we apply the NLCE method to a simp
resonant tunneling model with a moderately strong electr
phonon interaction and study its nonlinear response to a
bias. General nonequilibrium conditions are maintained
keeping the resonant level partly populated. We compare
numerical results with the standard NGF method with a s
energy in the Migdal approximation.22 For intermediate in-
teraction strengths, usual in polar semiconductors, we
that the NLCE method in the first cluster approximation
more precise than the approximate NGF method. We h
checked this directly by comparison with the exact solutio
available in the low-electron-density limit. The second clu
ter approximation appears to be problematic at modera
strong interactions and in the presence of a Fermi sea, s
larly as the original LCE method.

This paper is organized as follows. In Sec. III the LC
method for Green functions is extended into nonequilibriu
In Sec. III this approach and the NGF method with a se
energy in the Migdal approximation are applied to a reson
tunneling model with an electron-phonon interaction in a
bias. In Sec. IV numerical results of both methods for the
properties of the model are compared and limitations of
methods are discussed.

II. LINKED CLUSTER METHODS

Here we briefly review some basic features of the link
cluster expansion~LCE! for one-particle Matsubara Gree
functions.18 Next, we present the extension of the LCE
nonequilibrium situations~NLCE!.

A. Equilibrium LCE

Consider a quantum many-particle system described
the HamiltonianH5H01lH1, whereH0 is diagonalizable
7293 © 1997 The American Physical Society
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7294 56PETR KRÁL
andH1 contains the interactions.l is a formal device used to
enumerate the order of the perturbation expansion, whic
set tol51 at the end of the calculation. In equilibrium th
system can be described by the Matsubara Green funct
which can be perturbatively expanded in terms of the in
action part of the HamiltonianH1 as follows:18

G~1,2!52
^Tt@S~b!c~1!c†~2!#&0

^S~b!&0
5 (

n50

`

lnWn~1,2!

5G0~1,2!expF (
n51

`

lnFn~1,2!G . ~2.1!

In the second equality of Eq.~2.1!, G(1,2) is expressed in
terms of connected Feynman diagrams which are arran
according to the perturbation ordern in theclusters Wn . The
linked cluster expansion for the Green function~LCE! results
if this series ofWn is resummed in terms of the as-ye
undetermined objectsFn , as shown in the second line. Th
expansion coefficientsFn are evaluated by equating the c
efficients of the interaction parameterl of the two expansion
in Eq. ~2.1!:

F1~1,2!5
W1~1,2!

G0~1,2!
,

F2~1,2!5
W2~1,2!

G0~1,2!
2

1

2
F1~1,2!2, . . . . ~2.2!

The higher-order expressions get rapidly quite complica
Importantly, however, it is often sufficient to consider in t
expansion~2.1! only the first- and second-order termsF1 and
F2. The advantage of the method is that it provides a con
nient way of doing an infinite resummation; the disadvanta
is that it may lead to unphysical results, in particular f
strongly interacting many-particle systems.

The inherent limitations of the linked cluster expansi
can be traced to the fact that higher-order Feynman diagr
in Eq. ~2.1! are approximated by lower-order diagrams. E
perience shows that this limitation is less serious in the
sence of the Fermi sea, i.e., for one fermion interacting w
Bose excitations. In this case both the full Green function19,20

G(k,v) and its local component23 G(v)5(kG(k,v) have
been succesfully calculated by LCE. In the presence of
Fermi sea the expansion of the full Green functionG(k,v)
includes terms proportional to the number of particles,N,
present in the system, which can limit the convergence of
expansion~2.1!.18 Terms proportional toN do not occur in
the expansion of the local element24 G(v), where the Pauli
principle prevents more than one electron occupying a gi
level. However, coupling to other levels involves all particl
in the problem, and consequently the application of the L
method requires care. Due to heavy numerics, the L
method can be also evaluated here only for several low
clusters. It could be expected that this approximated met
gives reasonable results at least in a restricted param
space.

We investigate the validity of this surmise on a mod
system, mentioning situations where problems begin to a
Since our primary goal is to study nonequilibrium cond
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tions, we do not use the original LCE method but its no
equilibrium version resulting from analytical continuation.

B. Nonequilibrium LCE

To obtain the nonequilibrium version of LCE, we ca
perform the analytical continuation and reduction to re
times in the term(nlnWn(1,2) in Eq.~2.1!, just as done in
the derivation of the Kadanoff-Baym equations.5 Analo-
gously, in the steady-state case, the starting pointt0 of the
complex time path can be set to infinite past. The noneq
librium linked cluster expansion~NLCE! for the correlation
functionG,(1,2)[^c†(1)c(2)& in real times then results by
resummation of the new series as follows@the correlation
function G.(1,2) can be obtained similarly#:

G,~1,2!5 (
n50

`

lnWn
,~1,2!5G0

,~1,2!expF (
n51

`

lnFn
,~1,2!G .

~2.3!

The expansion coefficientsFn
, are given by a nonequilibrium

generalization of Eqs.~2.2!:

F1
,~1,2!5

W1
,~1,2!

G0
,~1,2!

,

F2
,~1,2!5

W2
,~1,2!

G0
,~1,2!

2
1

2
F1

,~1,2!2, . . . , ~2.4!

where the correlation functions for the cluster diagra
Wn

,,.(1,2) can be found fromWn(1,2) by application of the
Langreth rules.25

Another possibility of how to combine the NGF and LC
methods is to perform the analytical continuation in the LC
expansion for the spectral functionA(1,2)5G.(1,2)
1G,(1,2) ~or the propagatorGr). This version of the NLCE
method does not give all the information contained in t
correlation functionsG,, G., but in some situations this
information is not necessary. The expansion looks as
lows:

A~1,2!5G.~1,2!1G,~1,2!5 (
n50

`

ln@Wn
.~1,2!1Wn

,~1,2!#

5@G0
.~1,2!1G0

,~1,2!#expF (
n51

`

lnFn
A~1,2!G , ~2.5!

where the coefficientsFn
A are obtained as before,

F1
A~1,2!5

W1
.~1,2!1W1

,~1,2!

G0
.~1,2!1G0

,~1,2!
,

F2
A~1,2!5

W2
.~1,2!1W2

,~1,2!

G0
.~1,2!1G0

,~1,2!
2

1

2
F1

A~1,2!2, . . . .

~2.6!

This expansion is in many aspects similar to the expans
~2.3! but it can be numerically more stable in certain situ
tions. This is because the spectral functionA is not sharply
cut by the Fermi-Dirac distributionnFD at low temperatures
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56 7295NONEQUILIBRIUM LINKED CLUSTER EXPANSION FOR . . .
as the correlation functionsG,, G. in the former expansion
In the examples presented in the following sections the
sults for the spectral functionA calculated either from Eq
~2.3! or ~2.5! are practically identical.

The two NLCE methods in Eqs.~2.3! and ~2.5! coincide
in the limit of low electron~hole! concentration,nFD→0(1),
since in this limit one hasG0

,(v)→0, G0
.(v)→A0(v) @

G0
,(v)→A0(v), G0

.(v)→0#. In these one-particle limits
also the LCE and other one-particle methods2–4 can be safely
applied. Therefore it is possible to compare the NLCE
proach with the LCE method, which is known to give exa
results for certain special cases.18 Below we show in terms of
a model example that in the limitsnFD→0(1) the NLCE
method can give results which cannot in practice be dis
guished from the exact solution found by the LCE meth
Another interesting special situation corresponds to the h
temperature limit, wherenFD5 const (0, const,1) in the
studied spectral region.

III. APPLICATION TO TUNNELING

Here we study by the NLCE method electron transpor
a simple resonant tunneling system with a moderately str
electron-phonon interaction and general nonequilibrium c
ditions under a dc bias. The results are compared with th
obtained by the standard NGF approach.

A. Model

Our model is formed by a double-barrier structure with
resonant state located in the well between the two barrie7

The state is coupled via the tunneling barriers to two h
space reservoirs. In order to broaden the more general tr
port regimes with a partially occupied resonant level,
assume that the bands in the reservoirs are very wide.
interactions are considered in the reservoirs; however,
level is coupled to optical phonons. For simplicity, we a
sume that the phonons are not changed by the elect
phonon coupling, as it might be approximately correct
extended modes. A sketch of the model is shown in Fig.

The spinless Hamiltonian for this system can be written
follows:

FIG. 1. A schematic drawing of the resonant tunneling system
the wideband approximation. In equilibrium the chemical potent
in the reservoirsmL,R coincide. Under a dc bias they shift equ
amounts but in opposite directions with respect to the equilibri
chemical potentialm0.
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H5 (
k;a5L,R

Ek,ack,a
† ck,a1E0d†d

1 (
k;a5L,R

gk;a~ck,a
† d1H.c.!1(

q
\vqbq

†bq

1(
q

Mqd†d~bq1b2q
† !, ~3.1!

whereEk,a5L,R is the spectrum of energies for conductio
electrons in the left~right! reservoirs,E0 is the energy of the
level, andgk,a5L,R are the coupling parameters between t
level and the reservoirs. The optical phonons are charac
ized by the energies\vq and the interaction matrix elemen
Mq , which can be approximated by the constants\v0 and
M , defining the effective strength of the interactio
g5(M /\v0)2. The dc bias is simply modeled by differen
chemical potentials in the reservoirsmL,R , which shift in the
same amount but in opposite directions with respect to
equilibrium chemical potentialm0 and the rigid position of
the level.

B. NGF description of transport

The system can be described by nonequilibrium Gre
functions.5 In a steady state the integral form of Kadano
Baym ~KB! equations for nonequilibrium correlation func
tions can be written in a frequency representation
follows:26

G,~v!5Gr~v!S,~v!Ga~v!,

G.~v!5Gr~v!S.~v!Ga~v!. ~3.2!

Since the interaction is present only in the well, the analy
can be simplified by considering only the well diagonal e
ments of the above equations.

Coupling to the reservoirs can be described by the c
pling ~surface! Green functions27 approximated by
gL,R

2 GL,R
r (v), wheregL,R are effective local coupling con

stants andGL,R
r (v) are local elements of the Green functio

in the reservoirs. In the wideband limit~WBL!, intentionally
considered in this work, the coupling Green functions can
further replaced by the imaginary constants28 2 iGL,R/2.
Then the free and interacting nonequilibrium electron pro
gators for the level result as follows:

G0
r ~v!5

1

\v2E02gL
2GL

r ~v!2gR
2GR

r ~v!

'
1

\v2E01 i ~GL1GR!/2
,

Gr~v!'
1

\v2E01 iG/22Sc
r ~v!

, G[GL1GR ,

~3.3!

whereSc
r (v) is the propagator self-energy describing man

particle interactions.

n
s
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7296 56PETR KRÁL
The correlation functions for the self-energy in Eqs.~3.2!
are equal the sum of the hybridization~coupling! parts
Sh

,,.(v) and the many-particle partsSc
,,.(v),

S,~v!5Sh
,~v!1Sc

,~v!,

S.~v!5Sh
.~v!1Sc

.~v!. ~3.4!

In the WBL approximation the hybridization contribution
result as

Sh
,~v!'GLnFD~\v2mL!1GRnFD~\v2mR!,

Sh
.~v!'GL@12nFD~\v2mL!#

1GR@12nFD~\v2mR!#, ~3.5!

wherenFD is the Fermi-Dirac distribution function.
In systems without translational invariance the electr

phonon interaction has a nonzero Hartree contribution to
electron self-energy, which gives an additional polaron s
of the resonant level.12 The self-consistency with respect
redistribution of charges, included in a Hartree~Coulomb!
term, has been mentioned in the past.29,30 In our studies,
focused on many-particle effects, we neglect the Hart
term and take the electron self-energy in the Migd
approximation22 ~see also Fig. 2!. Then the correlation func
tions Sc

,(v), Sc
.(v) can be written as follows:

Sc
,~v!5E dv̄

2p
M2G,~v2v̄ !D,~v̄ !

5M2$G,~v2v0!nBE~v0!

1G,~v1v0!@11nBE~v0!#%,

Sc
.~v!5E dv̄

2p
M2G.~v2v̄ !D.~v̄ !

5M2$G.~v2v0!@11nBE~v0!#

1G.~v1v0!nBE~v0!%, ~3.6!

wherenBE is the Bose-Einstein distribution function. In E
~3.6! free phonons in equilibrium are considered for simpl
ity. The self-energy propagatorsSc

r ,a(v) can be obtained by
Eqs.~A6! and ~A7!.

The solution of the KB equations~3.2! can be expresse
as a pair of correlation functionsG,(v), G.(v), which can
be formally written as in equilibrium, Eq.~A5!:

G,~v!5A~v! f ~v!,

G.~v!5A~v!@12 f ~v!#. ~3.7!

Here both the spectral functionA(v) and the electron distri-
bution function f (v) are nonequilibrium quantities in th
presence of the dc bias. From Eqs.~3.7! it becomes clear tha
static nonequilibrium systems can be represented by any
functions fromG,(v), G.(v), A(v), f (v).

In nonequilibrium the distribution functionf (v) differs
from the Fermi-Dirac form already in the absence of int
actions. In this trivial case it can be immediately writte
-
e

ft

e
l

-

o

-

down when substituting the hybridization correlation term
Sh

,,. from Eqs.~3.5! into the free KB equations

G0
,~v!5G0

r~v!Sh
,~v!G0

a~v!,

G0
.~v!5G0

r~v!Sh
.~v!G0

a~v! . ~3.8!

For the symmetrical couplingGL5GR5G/2 the free distri-
bution function f 0(v) resulting from Eqs.~3.8!, as in Eqs.
~3.7!, is a simply weighted sum of the distribution function
in the reservoirs:

f 0~v!5
nFD~\v2mL!1nFD~\v2mR!

2
. ~3.9!

For the symmetrical coupling the dc current runni
through the system can be calculated from the spectral fu
tion A(v)5G,(v)1G.(v), resulting from Eqs.~3.2! or
~3.8!, by the following simple formula:28

Jdc5
eG

4\E d\v̄

2p
A~v̄ !@nFD~\v̄2mL!2nFD~\v̄2mR!#.

~3.10!

In the one-electron approaches2–4 often a Landauer formula
very similar to Eq.~3.10! is used, whereA(v) is substituted
by an equilibrium transmissivityT(v). In finite-density non-
equilibrium systems the spectral function can differ from
equilibrium form. Then the equilibrium transmissivity cann
be applied and the NGF method and the NLCE method,
scribed below, are at hand.

C. NLCE description of transport

In application of the NLCE to our system, we explicitl
evaluate the first- and second-order linked clus
coefficients18 F1, F2 in Eqs.~2.4!, ~2.6!, which can be found
from the cluster termsW1, W2 in Eq. ~2.1! ~see also Fig. 2!.
Thereby we generalize the equilibrium results of Maha19

and Dunn20 for electron-phonon interactions to nonequili
rium.

In Fig. 2 we show a diagrammatic expansion of the Dys
equation for the electron Green functionG in the present
problem. We neglect here and in the calculations the Har
term and diagrams dressing phonon lines.31 The last approxi-
mation could be possibly done for extended phonon mod
where the phonons can be also simply taken in equilibriu
If dressing is important, then also a fully self-consistent ph
non dynamics, with a proper relaxation mechanism, sho
be included. In the expansion in Fig. 2 all diagrams w
noncrossed phonon lines contribute to the Green func
approximated by the Migdal self-energy22 in Eq. ~3.6!. The
remaining diagrams with crossed phonon lines form the v
tex corrections.32 We can identify here the diagrams corr
sponding to the clustersWn , n50,1,2, introduced in Eq.
~2.1!. The zeroth termW0 is just the free Green functionG0.
The first-order clusterW1 is given by the first-order diagram
with a single-loop self-energy. The second-order clusterW2
is formed by three second-order diagrams denoted here
W2a,b,c .

The nonequilibrium correlation functionsG,(v), G.(v)
in Eq. ~2.3! or the spectral functionA(v) in Eq. ~2.5! can be
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obtained directly from the correlation functionsW1,2
,,.(v),

found in the Appendix B. To this goalW1,2
,,.(v) must be

transformed into a time domain and divided by the free c
relation functionsG0

,,.(122). Then the exponentials in
Eqs.~2.3! and~2.5! can be constructed, which are multiplie
by G0

,,.(122). The resulting full correlation function
G,,.(122) can be easily transformed back to the frequen
representation. As a test of the results obtained by the NL

FIG. 2. Diagrammatic expansion of the Dyson equation for
Green functionG in the electron-phonon interaction. All diagram
with noncrossed phonon lines contribute to the expansion of
Green function with the Migdal self-energy. The remaining d
grams form vertex corrections to this expansion. Diagrams con
uting to the zeroth-, first-, and second-order clusters are den
here byW0, W1, andW2a,b,c .
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method, we have numerically checked the sum r
*(dv/2p)A(v)51 in the examples presented below. T
dc current can be calculated from the correlation functio
G,,.(v) or the nonequilibrium spectral functionA(v) @cf.
Eq. ~3.10!#, just as in the NGF method.

IV. NUMERICAL RESULTS AND DISCUSSIONS

Here we present numerical results computed with
NLCE and NGF methods for the tunneling model of t
previous section and discuss the limitations of these
proaches.

A. Spectral properties

Consider first the limit of low electron~hole! concentra-
tion, nFD→0(1), where the one-electron methods wo
successfully.2–4 Here also the two NLCE approaches for th
correlation functions~2.3! and for the spectral function~2.5!
coincide. Physically, this limit corresponds to the case wh
the electron level in the quantum well is far above~below!
the Fermi level in the reservoirs, so that the problem can
solved as if only one electron~hole! is present in the system
The LCE method gives for the casenFD→0 the following
exact solution for the causal~retarded for one electron!
Green function18 in the time representation:

e

e
-
-

ed
G~ t !5G0~ t !e2g$[nBE~\v0!11]~12 ie2 i\v0t!1nBE~\v0!~12 iei\v0t!2 i\v0t%,

G0~ t !52
i

\
u~ t !e~2 iE0t/\22Gt !, ~4.1!
is

he
the
he
a-
where G0(t) is the free electron propagator~3.3!. After a
Fourier transform ofG(t) to the frequency representatio
the exact spectral functionA(v) can be obtained as in Eq
~A6!.

In Fig. 3 we show the equilibrium spectral functionA(v)
in the limit nFD→0, calculated by the LCE method in Eq
~4.1! and the NLCE and NGF methods discussed in the p
vious section. Numerically this limit is approached by su
stituting in the hybridization self-energies~3.5! the Fermi-
Dirac distribution functions in the reservoirs by the val
nFD50. The other parameters areE0515 meV,G58 meV,
\v0530 meV,g50.25, andT570 K. The Lorentzian free
solution is shown by the dotted line, the exact solution
Eqs. ~4.1! is shown by the dot-dashed line, the firs
~second-! order NLCE solution corresponds to the thic
~thin! solid line, and the NGF solution with the Migdal sel
energy is drawn by the dashed line. In the interacting so
tions a polaron shift of the central peak down to lower en
gies can be seen~a different shift would result in the
presence of the Hartree term12!. Here also characteristic sa
ellite peaks ~sidebands! can be observed, with energie
shifted from the main peak by multiples of the phonon e
ergy \v0. The magnitude of these satellites and the pola
shift of the main peak increase with the strength
interaction.2 It is interesting that the NLCE solutions ar
-
-

-
r-

-
n
f

FIG. 3. The spectral functionA(v) for the tunneling model
discussed in the text in the limitnFD→0. The parameters are
E0515 meV,G58 meV, \v0530 meV,g50.25, andT570 K.
The free solution is shown by the dotted line, the exact solution
shown by the dot-dashed line, the first-~second-! order NLCE so-
lution corresponds to the thick~thin! solid line, and the NGF solu-
tion with the Migdal self-energy is drawn by the dashed line. T
exact and NLCE solutions practically coincide everywhere, but
position of the first satellite, which we present magnified in t
inset. The solution of the NGF method for the Migdal approxim
tion for the self-energy gives considerably worse results.
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practically indistinguishable from the exact solution. In t
inset we show tiny differences between the exact and NL
solutions in the position of the first sideband. The small d
ference between the exact and NLCE solutions can be
plained by the fact that the analytical structures of the ex
nent in the exact solution~4.1! and the NLCE solution with
theF1

A coefficient in Eq.~2.6! show minor differences for the
presently used parameters (\v0'4G). Quite remarkably,
the solution of the NGF method with the Migdal approxim
tion of the self-energy, shown by the dashed line, leads
significantly different satellite structure. Especially the d
ferent distance of the satellites from the main peak is se
Similar differences have been also found on a two-le
model and a continuous model, in the presence of the Fe
sea, with an electron-phonon interaction.31

The situation with a nearly empty~full ! level appears, for
example, when phonon satellites are measured in the ta
the resonant current through the level.1 These limit popula-
tions can be hardly realized in such investigations for lo
energy~acoustic! phonons33,34 or when the bands coupled t
the level are too wide. The WBL approximation used here
well suited to simulate these more general situations, wh
are beyond the scope of the transmissivity methods.2–4 The
influence of filling of the level on the tunneling current h
been previously addressed10,12 by the NGF method, but the
present NLCE theory allows a more quantitative discuss
of these phenomena in the presence of moderately st
interactions.

We can investigate this finite-density case, which phy
cally corresponds to moving the level within the Fermi sea
such a way that the limitnFD→0 is fluently changed by
nFD→1. Filling of the level depends on various factors, li
matching of the bands of the reservoirs with the level or
ratio GL /GR of the coupling constants to the reservoirs.12 In
Fig. 4 the spectral function is shown for the same parame
as in the previous figure, but for the standard form of
Fermi-Dirac distributionnFD (mL5mR5m050), substituted
in Eqs. ~3.5!. For the presently used parameters the fir

FIG. 4. The equilibrium spectral functionA(v) calculated by
the NGF and NLCE methods for the parameters of Fig. 3 but w
a finite density of particles corresponding to the standard form
the Fermi-Dirac distribution. Here the exact solution is not ava
able. We present only the first-order solutions, since the sec
order solution is problematic in the presence of the Fermi sea.
solution of the NGF method with the Migdal self-energy giv
again a quite different satellite structure.
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order NLCE solution can be calculated without maj
troubles, but the second-order solution appears to be p
lematic at moderately strong interactions and in the prese
of the Fermi sea, similarly as the original LCE method.18 In
this finite-density case the exact solution is no longer av
able, but from the similarity of Figs. 3 and 4 it can be e
pected that it is close to the presented first-order NLCE
lution. We can observe that this NLCE solution gives he
sharper satellites than in Fig. 4. The NGF solution with t
Migdal self-energy is again very different.

The problems of the second-order solution result from
fact that the relevant exponentF2

A(t) in Eqs. ~2.6! has a
positive real part which rapidly grows witht and cannot be
diminished for larget by the prefactorA0(t) in front of the
exponent. Similar growth is present also in the first-ord
solution, but its limitation becomes serious for much stron
interactions or at low temperatures. It is not clear whet
this fast growth could be renormalized in some way, as
other similar methods.31 Here we show at least the reaso
able solutions resulting from the present form of the NLC
method.

We can approach also the nonequilibrium situatio
where both the spectral functionA(v) and the distribution
function f (v) can be strongly changed, as shown, for e
ample, in resonant tunneling through a Kondo impurity.14,15

In Fig. 5 the nonequilibrium spectral functionA(v) is cal-
culated for our model for the parameters of Fig. 4 and
biasmL52mR560 meV. Only the first-order approximatio
of the NLCE method is presented from the same reason
in the previous figure. Here it is quite similar to the NG
solution. If the left chemical potential crosses the position
the levelmL'E0, the spectrum calculated by both the NG
and NLCE methods becomes symmetrically located aro
the noninteracting solution, because the level becomes
filled due to GL5GR . This particle-hole symmetry is re
flected by a mirror symmetry of the correlation functio
G,(v), G.(v), shown in the insets. The symmetrization
the spectral function occurs for different biases even ifGL
ÞGR .12 We mention that in the WBL approximation th

h
f

-
d-
e

FIG. 5. The nonequilibrium spectral functionA(v) calculated
by the methods and the same parameters as in Fig. 4. Here the
is chosenmL52mR560 meV. Note that the spectral function be
comes symmetric for both NLCE and NGF methods, since the le
is approximately half populated here. In the insets the nonequ
rium correlation functionsG,(v), G.(v) are shown, which are
for the present parameters close to each other’s mirror images
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satellites in the changing spectrum~Figs. 4 and 5! can be
observed by the current probe only if they appear toge
with the central peak in the energy window (mL ,mR).

In Fig. 6 we present also the nonequilibrium distributi
function f (v), resulting directly from the correlation func
tions ~3.7! as f (v)5G,(v)/@G,(v)1G.(v)#. The nonin-
teracting distributionf 0(v) is formed by two Fermi-Dirac
distributionsnFD shifted byumL2mRu as shown in Eq.~3.9!.
The interacting distribution has been studied for weak in
action strengths in a model similar to ours.9 For the stronger
interactions investigated here we observe deep oscillation
these distributions, which are quite similar for the NGF a
NLCE solutions. In the region of the central peak\v'20
meV the two solutions are a little different and in the NG
solution an inverted population appears, showing a lack
relaxation inside the central peak. The local maxima of
deep oscillations in the curveu f (v)2 f 0(v)u in Fig. 6 coin-
cide with the positions of the satellites in Fig. 5. Therefo
these oscillatory structures reflect increased nonequilibr
electron population in the satellite peaks. We have stud
also tunneling systems with an electron-electr
interaction,35 where these structures show a different abil
of this interaction to equilibrate the system to an increa
temperature, given approximately bykBDT'umL2mRu.

To present in a more clear way the results obtained by
NLCE method, we show in Fig. 7 the spectral function c
culated by the first-order NLCE for the changed paramet
the level positionE0525 meV, the temperatureT5300 K,
and the interaction strengthg51 ~we have realized from
numerical analysis that at these temperatures the NLC
reliable for stronger coupling!. The short-dashed line~upper
drawing! shows the solution for the one-electron lim
nFD→0, which can be also obtained by the LCE metho2

the dashed line~middle drawing! corresponds to the presenc
of the Fermi sea, and the solid line~lower drawing! repre-
sents the nonequilibrium solution formL560 meV. All the
solutions in Fig. 7 differ by the polaron shift of the ma
peak, denoted by the solid small triangle, with respect to
position of the level, shown in the figure by a thin horizon
dot-dashed line. Forg51 the one-electron solution has
polaron shift down to lower energies equal the phon
energy2 D15\v0, so that thefirst satellite is at the position

FIG. 6. The distribution functionf (v) calculated for the param
eters in Fig. 4. The solution for the noninteracting model is form
by two Fermi-Dirac distributions shifted by the amountumL2mRu.
The NGF and NLCE show additional oscillatory structures, refle
ing increased electron population in the satellite peaks.
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of the levelE0. In the presence of the Fermi sea the polar
shift is smallerD2'\v0/2, due to filling of the level. In this
solution also the peaks appear to be sharper and higher
in the one-electron limit. In nonequilibrium the level be
comes even more filled by electrons, and as a result the
further decreases to aboutD2'\v0/4. As the level filling
approaches one-half, a symmetrization of the peak heig
with a center in the main~first! peak, can be also observed

B. I -V characteristics

In many experimental resonant tunneling systems
bands for the reservoirs are narrow. As a result the cur
through the level resonantly falls down when the movi
bands with a dc bias no longer mismatch the level. In o
model the WBL approximation is applied and so the tunn
ing current does not resonantly fall down. Nevertheless,
tunneling current through the satellites can be still obser
on the background of the current through the level.

In Fig. 8 we show theI -V characteristics of the presen
model calculated from Eq.~3.10! for the parameters in Figs
4–6 and the bias in the interval 0,mL52mR,70 meV.
Since atT570 K the temperature spreading prevents a go
observation of the tunneling through satellites~see the inset!,
we have calculated theI -V characteristics also forT530 K,
presented in Fig. 8. At this temperature clearly separa

d

-

FIG. 7. The spectral function calculated by the first-order NLC
method for the changed parameters: the level positionE0525 meV
~thin horizontal dot-dashed line!, the temperatureT5300 K, and
the interaction strengthg51. The short-dashed line~upper draw-
ing! shows the one-electron limitnFD→0, the dashed line~middle
drawing! corresponds to the presence of the Fermi sea, and the
line ~lower drawing! represents the nonequilibrium solution fo
mL560 meV. The polaron shift of the main peak, denoted by
solid small triangle, becomes smaller when going from the firs
the last of these solutions as follows:D15\v0, D2'\v0/2,
D3'\v0/4. Also the symmetry of the spectra with respect to t
main peak increases in this order.
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bumps in the interacting solutions for the current can
observed, when the chemical potentials of the reserv
cross the main peak or the satellites. In the current one b
is present above and one below the central region of
current (mL'25 meV!. The lower bump (mL'10 meV! re-
sults from the polaron shift of the main peak in Fig. 4. Th
bump is slightly different in the NLCE and NGF solution
because these two solutions give a little different pola
shifts. In fact contributions to the current from the main pe
and the first satellite below it cannot be well distinguish
for the present parameters, because these peaks are ap
mately at the same distance, but opposite directions, from
equilibrium position of the Fermi level. Therefore the ma
peak is crossed by the left chemical potential moving up
the same time when the first satellite below it is crossed
the right chemical potential moving down. The second bu
(mL'40 meV! appears when the chemical potentialmL
crosses the position of the first satellite above the main p
At even higher biases the interacting solutions for the curr
approach the free solution and all solutions saturate to
valueeG/4\, which is the prefactor in formula~3.10!. In ac
linear response problems or general time-dependent s
tions the two methods should give more different solutio

Let us briefly discuss the failure of the presented metho
It is evident that the NGF solution in the Migdal approxim
tion gives results different from the exact solution beca
the crossed diagrams in Fig. 2 are neglected there.
wrong shift of satellites in this solution has been also o
served elsewhere.31 The limitation of the NLCE ~LCE!
method in systems with many particles is different from t
approximate NGF method, but it is also serious. Particula
the Green functions obtained in such a way do not fu
automatically Herglotz properties~negative densities o
states can appear! and the higher-order cluster approxim
tions even do not seem to give a convergent solution at
termediary interaction strengths and in the presence of
Fermi sea. Based on our numerical results we estimat
least the region of validity of the first-order cluster appro
mation in NCLE. We have found that this method can g
reasonable results, if the inequalitiesg,0.5, G,kT are sat-

FIG. 8. TheI -V characteristics for the example in Figs.4–6, t
temperature T530 K, and the biases in the regio
0,mL52mR,70 meV. The noninteracting solution~dotted line!
is structureless. The first-order NLCE solution~solid line! and the
NGF solution ~dashed line! show bumps, reflecting tunnelin
through individual peaks. In the inset the solution forT570 K is
presented, where bumps, are not seen due to temperature sme
e
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isfied. In fact the limitingg is also dependent onT ~see Fig.
7!, so that the total region of validity is located in (g,G,T)
space. The inequalityG,kT is determined by new physica
effects, resulting, in the presence of interactions, from a h
gradient of electron concentration in the region of the co
pling broadened level. Such effects can be accounted onl
iterative solutions, which sum infinite series of Feynman d
grams. In general the NLCE~LCE! method approximated by
low-order clusters can only describe physical systems wh
the relevant physics is qualitatively included already in t
lowest Feynman diagrams~no phaselike transitions!. We do
not give a more detailed analysis here, but hope that fu
works will further clarify the mentioned problems.

V. CONCLUSION

We have generalized into nonequilibrium the LC
method for Matsubara Green functions18 by analytical con-
tinuation as in the NGF method.5 The resulting stationary
version of the NLCE method in the first cluster approxim
tion can reasonably describe nonequilibrium finite-dens
systems with moderately strong interactions. The sec
cluster approximation of this method becomes problemati
finite-density systems as the original LCE method18 and
presently it is not clear to which extent this failure can
overcome.

The NLCE method has been tested on a simple reso
tunneling model with an electron-phonon interaction in a
bias. Numerical results for the nonequilibrium spectral a
distribution functions have been obtained in the first ord
and, in the weak density limit, in the second order of t
cluster approximations. From these nonequilibrium spec
the dc resonant tunneling current has been found. The re
were compared with the solution of the standard NG
method with a Migdal self-energy. For intermediate intera
tion strengths the first-order NLCE is more precise than t
approximate NGF method, which neglects crossed Feynm
diagrams. In the limit of a weak density of particles this h
been checked by comparison with the exact solution of
problem. Spectra have been obtained for many-particle
tems with an electron-phonon interaction with intermedia
interaction strengths and in general nonequilibrium con
tions. Unfortunately, here the second-order NLCE appear
be inapplicable in the present form.

We would like to investigate by the NLCE method als
time-dependent quantum systems in ac~Refs. 36 and 37! and
pulsed electric fields.38 We believe that these studies cou
lead to a deeper understanding of nonequilibrium quan
systems with moderately strong interactions.
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APPENDIX A

Here we present some relationships valid for Green fu
tions ~self-energy!. The causal fermion (O5c) or boson
(O5A) Green functions in real times are defined by32 ~tem-
perature Matsubara Green functions18 are defined analo
gously!

Gt~1,2!52
i

\
^T@O~1!O†~2!#&, j [~r j ,t j ! ~ j 51,2!.

~A1!

Correlation functions are related to these causal function
follows:

i\Gt~1,2!5G.~1,2!5^O~1!O†~2!&, t1.t2 ,

7 i\Gt~1,2!

5G,~1,2!5^O†~2!O~1!&, t1,t2 , ~A2!

where the upper~lower! sign applies to fermions~bosons!.
The retarded and advanced Green functions are define

Gr~1,2!52
i

\
u~122!@G.~1,2!6G,~1,2!#,

Ga~1,2!5
i

\
u~221!@G.~1,2!6G,~1,2!#, ~A3!

whereu(t)50, t,0, and u(t)51, t>0.
In equilibrium and space homogeneous systems the G

functions depend only on the difference of coordina
(r ,t)5(r 12r 2 ,t12t2), so that they can be easily Fourie
transformed to the (k,v) representation as follows:

G~k,v!5E dnr E dt ei ~vt2r •k!G~r 12r 2 ;t12t2!.

~A4!

The equilibrium fermion and boson correlation functions c
be expressed as5

G,~k,v!5nF,B~\v!A~k,v!,

G.~k,v!5@17nF,B~\v!#A~k,v!, ~A5!

wherenF andnB denote the Fermi-Dirac and Bose-Einste
distributions,
-

as

by

en
s

n

nF,B~\v!5
1

e\v/kT61
,

and the spectral function is defined by

A~k,v![22Im Gr~k,v!5G.~k,v!6G,~k,v!.
~A6!

The retarded Green function can be calculated from
spectral function~A6! by the Hilbert transform

Gr~k,v!5E
2`

` dv̄

2p

A~k,v̄ !

v2v̄1 id
. ~A7!

APPENDIX B

We evaluate the cluster coefficientsW1,2
, , W1,2

. for the
above-discussed resonant tunneling model with the elect
phonon interaction. These correlation factors result by ap
cation of LW rules25 in the causal termsW1,2 written in Mat-
subara Green functions.

The lesser correlation factorW1
, can be written in a fre-

quency representation as follows~similarly can be obtained
the higher partW1

.):

W1
,~. !~v!5G0

,~. !~v!M2@G0~v2v̄ !D~v̄ !#aG0
a~v!

1G0
r ~v!M2G0

,~. !~v2v̄ !D,~. !~ v̄ !G0
a~v!

1G0
r ~v!M2@G0~v2v̄ !D~v̄ !# rG0

,~. !~v!,

~B1!

where the bar over the frequency variablev̄ means
integration over this variable. The propagato

@G0(v2v̄)D(v̄)# r ,a can be found from the correlated par
G0

,(.)(v2v̄)D,(.)(v̄) by the Hilbert transform~A7!. The
free but nonequilibrium correlation functions and propag
tors for electrons, which are necessary in Eq.~B1!, are in
Eqs.~3.3! and~3.8!. The phonon functions can be evaluat
from Eqs. ~A5! and ~A7!, with the use of the free phono
spectral function.18

The second-order coefficientsW2
, , W2

. are formed by
three terms depicted in the diagram in Fig. 2. The first o
W2a

, , which corresponds to two sequent scattering proces
of first order, results as
s

W2a
,~. !~v!5G0

,~. !~v!M2@G0~v2v̄ !D~v̄ !#aG0
a~v!M2@G0~v2 v̄̄ !D~ v̄̄ !#aG0

a~v!

1G0
r ~v!M2G0

,~. !~v2v̄ !D,~. !~ v̄ !G0
a~v!M2@G0~v2 v̄̄ !D~ v̄̄ !#aG0

a~v!

1G0
r ~v!M2@G0~v2v̄ !D~v̄ !# rG0

,~. !~v!M2@G0~v2 v̄̄ !D~ v̄̄ !#aG0
a~v!

1G0
r ~v!M2@G0~v2v̄ !D~v̄ !# rG0

r ~v!M2G0
,~. !~v2 v̄̄ !D,~. !~ v̄̄ !G0

a~v!

1G0
r ~v!M2@G0~v2v̄ !D~v̄ !# rG0

r ~v!M2@G0~v2 v̄̄ !D~ v̄̄ !# rG0
,~. !~v!. ~B2!

The second diagram corresponds to a two-phonon sequent scattering without crossing of phonon lines. The termW2b
,(.)

result in the form
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W2b
,~. !~v!5G0

,~. !~v!M2@W1~v2v̄ !D~v̄ !#aG0
a~v!1G0

r ~v!M2W1
,~. !~v2v̄ !D,~. !~ v̄ !G0

a~v!

1G0
r ~v!M2@W1~v2v̄ !D~v̄ !# rG0

,~. !~v!, ~B3!

where the functionW1 is the same as in Eq.~B1!. Again the propagator terms@W1(v2v̄)D(v̄)# r ,a can be found from the
correlated partsW1

,(.)(v2v̄)D,(.)(v̄) by the Hilbert transform~A7!.
Finally the third diagramW2c corresponds to a two phonon sequent scattering with crossing of phonon lines. Ana

continuation can be performed as usual,25 but the mixed structure of indices from crossed lines leads to analytical terms
a more complex structure. In particular it is necessary to introduce propagators for each correlation function sepa
follows:

2
i

\
Q~1,2!G,~. !~1,2![G,~. !r~1,2!, Ga~1,2!5G.a~1,2!1G,a~1,2!,

i

\
Q~2,1!G,~. !~1,2![G,~. !a~1,2!, Gr~1,2!5G.r~1,2!1G,r~1,2!,

2
i

\
Q~1,2!D,~. !~1,2![D,~. !r~1,2!, Da~1,2!5D.a~1,2!2D,a~1,2!,

i

\
Q~2,1!D,~. !~1,2![D,~. !a~1,2!, Dr~1,2!5D.r~1,2!2D,r~1,2! . ~B4!

Then the correlation partW2c
,(.) for the third diagram results in the form

W2c
,~. !~v!5M4G0

r ~v2v̄1!D,~. !~ v̄2!D,~. !~ v̄1!G0
a~v2v̄2!G0

,~. !~v2v̄12v̄2!

2M4G0
,~. !~v2v̄1!Da~v̄2!Dr~v̄1!G0

,~. !~v2v̄2!G0
.~, !~v2v̄12v̄2!

1M42Re@G0
.r~v2v̄1!D,r~v̄1!#D,~. !~ v̄2!G0

,~. !~v2v̄2!G0
,~v2v̄12v̄2!

1M42Re@G0
,r~v2v̄1!D.r~v̄1!#D,~. !~ v̄2!G0

,~. !~v2v̄2!G0
.~v2v̄12v̄2!

1M42Re@G0
.r~v2v̄1!G.r~v2v̄12v̄2!#D,~. !~ v̄2!D.~v̄1!G0

,~. !~v2v̄2!

1M42Re@G0
,r~v2v̄1!G,r~v2v̄12v̄2!#D,~. !~ v̄2!D,~v̄1!G0

,~. !~v2v̄2!

1M42Re@ iG0
.r~v2v̄1!D.r~v̄1!G,a~v2v̄12v̄2!#D,~. !~ v̄2!G0

,~. !~v2v̄2!

1M42Re@ iG0
,r~v2v̄1!D,r~v̄1!G.a~v2v̄12v̄2!#D,~. !~ v̄2!G0

,~. !~v2v̄2!. ~B5!
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