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Nonequilibrium linked cluster expansion for steady-state quantum transport
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We generalize the linked cluster expansion of Matsubara Green functions into nonequilibrium situations.
This allows us to compute nonequilibrium correlation functions and, consequently, physical observables for
interacting quantum systems with intermediate interaction strengths. As a specific example, we study nonlinear
dc transport in a resonant tunneling system with electron-phonon interaction. The first- and second-order
nonequilibrium cluster approximations are explicitly evaluated. The results are compared with those obtained
by the standard nonequilibrium Green functions approach within the Migdal approximation for the self-energy
and in the low-density limit also with the known exact solution. For moderately strong electron-phonon
interactions the first-order linked cluster approximation is more precise than the Migdal approach. The second-
order approximation appears to be problematic in the presence of the Ferf68&63-182¢07)02435-1

[. INTRODUCTION nonequilibrium by analytical continuation, just as in the NGF
method® Following this way we obtain a hybrid method,
Presently, systems of reduced dimensionality are studiedonequilibrium linked cluster expansiofNLCE), which
intensively, where strongly nonequilibrium conditions can becombines features of both the NGF and LCE methods. In
easily maintained by weak external fields and where interacParticular, the approach can describe some nonequilibrium
tions become more important due to confinement of the elecduantum systems with moderately strong interactions.
tron states. A generic example is resonant tunneling systems As an illustration we apply the NLCE method to a simple
in the presence of electron-phonon interaction. The experitesonant tunneling model with a moderately strong electron-
mental observation of phonon-mediated resonant chahnel§honon interaction and study its nonlinear response to a dc
(sidebandsin these low-dimensional structures has stimu-bias. General nonequilibrium conditions are maintained by
lated numerous theoretical studfééwhich address also in- keeping the resonant level partly populated. We compare our
termediary strong electron-phonon interactions. These modlumerical results with the standard NGF method with a self-
erately interacting systems have been less investigate@nerdy in the Migdal approximatiofi. For intermediate in-
theoretically in general steady-state nonequilibrium conditeraction strengths, usual in polar semiconductors, we find
tions. that the NLCE method in the first cluster approximation is
Quantum systems out of equilibrium can be described bynore precise than the approximate NGF method. We have
nonequilibrium Green functiondNGF's) introduced by Checked this directly by comparison with the exact solution,
Kadanoff and Bayrmor Keldysh® The transport equations available in the low-electron-density limit. The second clus-
for nonequilibrium correlation functions of this method haveter approximation appears to be problematic at moderately
been used to describe various nonequilibrium systems, irstrong interactions and in the presence of a Fermi sea, simi-
cluding the resonant tunneling assisted by phorotisin  larly as the original LCE method.
practice, however, NGF's are often limited to perturbative This paper is organized as follows. In Sec. IIl the LCE
many_particie approximationS, characterized by some Suﬂnethod for Green functions is extended into nonequﬂlbl’lum.
sets of Feynman diagrams, and thus restricted to relativelj? Sec. Il this approach and the NGF method with a self-
weak many-body interactiors. Nevertheless, recently the €nergy in the Migdal approximation are applied to a resonant
NGF method has been successfully applied to some Strongpi,mneling model with an electron-phonon interaction in a dc
interacting quantum Systems in nonequiiibri[']:ﬁ‘ﬁ:!-7 bias. In- Sec. IV numerical results of both methOdS for the dc
Some intermediary interacting many_particie Systems irpropertles Of the m0de| are Compared and |ImltatI0nS Of the
equilibrium can be described by a linked cluster expart§ion methods are discussed.
(LCE). Evaluation of the Green functions in this method is
based on an approximate summation of the Feynma'n dia- Il. LINKED CLUSTER METHODS
grams, different from the Dyson equation. In systems with an
electron-phonon interactién?°it was found that the method Here we briefly review some basic features of the linked
works rigorously only in the presence of offeermi particle  cluster expansioflLCE) for one-particle Matsubara Green
interacting with boson& analogously to the path integral functions'® Next, we present the extension of the LCE to
evaluation of physical properties of polardiisdowever, the  nonequilibrium situation$NLCE).
possibility is left open that in a restricted region of param-
eters the method gives reasonable results also for systems
with a finite density of particles.
In such a region of parameters the equilibrium LCE Consider a quantum many-particle system described by
method for Matsubara Green functions can be generalized tine HamiltonianH=Hy+AH{, whereH, is diagonalizable

A. Equilibrium LCE
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andH contains the interactiona. is a formal device used to tions, we do not use the original LCE method but its non-
enumerate the order of the perturbation expansion, which isquilibrium version resulting from analytical continuation.
set toh=1 at the end of the calculation. In equilibrium this

system can be described by the Matsubara Green functions, B. Nonequilibrium LCE

which can be perturbatively expanded in terms of the inter-

action part of the Hamiltoniafi; as follows28 To obtain the nonequilibrium version of LCE, we can
1 .

perform the analytical continuation and reduction to real

o times in the tern= A"W,(1,2) in Eg.(2.1), just as done in
t n n
G(12)=— (TAS(B)e(1)e'(2)]o _ AW (1.2) the derivation of the Kadanoff-Baym equatichsAnalo-
’ (S(B))o =0 m gously, in the steady-state case, the starting pijraf the

. complex time path can be set to infinite past. The nonequi-
librium linked cluster expansiofNLCE) for the correlation
— n
—G0(1,2)exp{ nzl A F“(l'z)}' 2.0 functionG=(1,2)=(c'(1)c(2)) in real times then results by
resummation of the new series as folloythe correlation
In the second equality of Eq2.1), G(1,2) is expressed in function G~ (1,2) can be obtained similarty
terms of connected Feynman diagrams which are arranged

according to the perturbation ordeiin theclusters W,. The - - < - -
linked cluster expansion for the Green functi/CE) results G<(1'2):n§0 AW (1,2 =Gg (1,9ex 21 NFL(L2)).
if this series of W, is resummed in terms of the as-yet- (23

undetermined objects,,, as shown in the second line. The ) R ) o
expansion coefficients , are evaluated by equating the co- The expansion coefficients; are given by a nonequilibrium
efficients of the interaction parametenf the two expansion 9generalization of Eqs2.2):

in Eq. (2.2):
in Eq. (2.1 ) WE(L2)
Fi(l,2=——,
= 12—% G§(1,2)
l( 1 )_ G0(1,2)’
W5(1,2 1
Wy(1,2 1 F2<(1,2)=i(—)—§F1<(1,2)2, o (29
F2(1,2)=m—§F1(1,2)2, (2.2 Go(1.2

where the correlation functions for the cluster diagrams

The higher-order expressions get rapidly quite complicatedW~(1,2) can be found frorV,(1,2) by application of the
Importantly, however, it is often sufficient to consider in the Langreth rule$®
expansion(2.1) only the first- and second-order terfag and Another possibility of how to combine the NGF and LCE
F,. The advantage of the method is that it provides a convemethods is to perform the analytical continuation in the LCE
nient way of doing an infinite resummation; the disadvantageexpansion for the spectral functiom\(1,2)=G~(1,2)
is that it may lead to unphysical results, in particular for + G=(1,2) (or the propagato@"). This version of the NLCE
strongly interacting many-particle systems. method does not give all the information contained in the

The inherent limitations of the linked cluster expansioncorrelation functionsG<, G~, but in some situations this
can be traced to the fact that higher-order Feynman diagranmiaformation is not necessary. The expansion looks as fol-
in Eqg. (2.1) are approximated by lower-order diagrams. Ex-lows:
perience shows that this limitation is less serious in the ab-
sence of the Fermi sea, i.e., for one fermion interacting with - - - N _
Bose excitations. In this case both the full Green fundfigh ~ A(1,2=G7(1,2+G (1'2)220 MIWq (1,2 + W, (1,2)]
G(k,w) and its local componefit G(w)==3,G(k,w) have

been succesfully calculated by LCE. In the presence of the *
Fermi sea the expansion of the full Green funct®(k, ») =[G§(1,2)+G§(1,2)]9XF{ > NFAL2|, (25
includes terms proportional to the number of particlss, n=1
present in the system, which can limit the convergence of thhere the Coefﬁciemgﬁ are obtained as before,
expansion(2.1).8 Terms proportional tdN do not occur in
the expansion of the local elemé&hG(w), where the Pauli WS (1,2 + WS (1,2
principle prevents more than one electron occupying a given F’f(l,2)= = > ,
level. However, coupling to other levels involves all particles Go(1,2+Gg(1,2)
in the problem, and consequently the application of the LCE
method requires care. Due to heavy numerics, the LCE A W2>(1,2)+W2<(1,2) 1, )
method can be also evaluated here only for several lowest F2(1.2)=— < —5F1(12% ...
: . G5 (1,2+G5(1,2
clusters. It could be expected that this approximated method 0 0 (2.6)

gives reasonable results at least in a restricted parameter
space. This expansion is in many aspects similar to the expansion
We investigate the validity of this surmise on a model(2.3) but it can be numerically more stable in certain situa-
system, mentioning situations where problems begin to arisdions. This is because the spectral functiris not sharply
Since our primary goal is to study nonequilibrium condi- cut by the Fermi-Dirac distributiongp at low temperatures
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equilibrium dc-bias

H = E Ek,aCE ack a+ Eode
k;a=L,R B

€
HL —> t t
+ (e, d+H.c)+ hwgbgb
uL Eo o Eo k;aZL’R YicalCka ) % qYqYq

+> Mqd'd(bg+b",), (3.1
q

WwhereEy .- r is the spectrum of energies for conduction

FIG. 1. A schematic drawing of the resonant tunneling system i r . . .
the wideband approximation. In equilibrium the chemical potentialsel€ctrons in the leftright) reservoirsE, is the energy of the

in the reservoirsu r coincide. Under a dc bias they shift equal level, andyy - r are the coupling parameters between the

amounts but in opposite directions with respect to the equilibrium!eVel and the res_ervoirs. The optical phonons are character-
chemical potentiaj,. ized by the energiesw, and the interaction matrix elements

Mg, which can be approximated by the constafis, and
M, defining the effective strength of the interaction

. P, .
as the correlation functions~, G~ in the former expansion. g=(M/ﬁw0)2. The dc bias is simply modeled by different

In the examples presented in the following sections the rehemical potentials in the reservojas w, which shift in the

sults for the spectral functioA calculated either from Ed. ¢5me amount but in opposite directions with respect to the

(2.3 or (2.5 are practically identical. o equilibrium chemical potentiak, and the rigid position of
The two NLCE methods in Eq$2.3) and (2.5 coincide  ihe |evel.

in the limit of low electron(hole) concentrationngp—0(1),
since in this limit one hass; (w)—0, Gg (w)—Ag(w) [
Gg (w)—Ag(w), Gg (w)—0]. In these one-particle limits . o
also the LCE and other one-particle methfodsan be safely The system can be described by nonequilibrium Green
applied. Therefore it is possible to compare the NLCE ap_functlons. Ina st(_aady state the |r_1t.eg.ral form of Kadanoff—
proach with the LCE method, which is known to give exactE""lym (KB) equaﬂpns fqr nonequilibrium  correlation func-
results for certain special casé$Below we show in terms of ;E'Onns 9%” be written in a frequency representation as
a model example that in the limitsyp—0(1) the NLCE ~ 'O"OWS:
method can give results which cannot in practice be distin-
guished from the exact solution found by the LCE method.

Another interesting special situation corresponds to the high-
temperature limit, wheragp= const (0< const<1) in the G (0)=G"(0)Y7(0)G¥w). (3.2
studied spectral region.

B. NGF description of transport

G (0)=G"(0)X(0)G}(w),

Since the interaction is present only in the well, the analysis
can be simplified by considering only the well diagonal ele-
ments of the above equations.
Coupling to the reservoirs can be described by the cou-
_pling (surfacé Green function® approximated by
Here we study by the _NLCE metho_d electron transport m%lRGrL’R(w)' where y, r are effective local coupling con-
a simple resonant tunneling system with a moderately strongi- s ands! () are local elements of the Green functions
electron-phonon interaction and general nonequilibrium conyy, the reservoirs. In the wideband limVBL), intentionally
ditions under a dc bias. The results are compared with thosgynsidered in this work, the coupling Green functions can be
obtained by the standard NGF approach. further replaced by the imaginary const&fts-iT| g/2.
Then the free and interacting nonequilibrium electron propa-
gators for the level result as follows:

IIl. APPLICATION TO TUNNELING

A. Model

1
fiw—Ey— ¥{ Gl (») — YAGR(w)

Our model is formed by a double-barrier structure with a Gl (w)=
resonant state located in the well between the two barfiers. 0
The state is coupled via the tunneling barriers to two half-
space reservoirs. In order to broaden the more general trans- _ 1
port regimes with a partially occupied resonant level, we - ho—Ey+i(I' +Tg)/2’
assume that the bands in the reservoirs are very wide. No
interactions are considered in the reservoirs; however, the
level is coupled to optical phonons. For simplicity, we as- G'(w)~ 1 , T=I, +Tg,
sume that the phonons are not changed by the electron- hwo—Eq+il2—3(w)
phonon coupling, as it might be approximately correct for 3.3
extended modes. A sketch of the model is shown in Fig. 1.
The spinless Hamiltonian for this system can be written agvhereX ¢(w) is the propagator self-energy describing many-
follows: particle interactions.
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The correlation functions for the self-energy in E¢&2) down when substituting the hybridization correlation terms
are equal the sum of the hybridizatiaiwoupling parts 3~ from Egs.(3.5) into the free KB equations
317 (w) and the many-particle pars; '~ (o),
G (@)=Gg(w)2} (w)Gh(w),
35 (0)=35(0)+3; (w),
G (0)=Gg(w)3; (w)G(w) . (3.9

> . > >
(@)=2q(0) 2 (@), G9 or the symmetrical coupling, =I'r=T/2 the free distri-
In the WBL approximation the hybridization contributions bution functionfy(w) resulting from Egs(3.8), as in Egs.
result as (3.7), is a simply weighted sum of the distribution functions
in the reservoirs:
3n(@)=Tnep(fiw—u) +Trnep(ho— ug),

Fo(w)= nFD(ﬁw_ML)';nFD(ﬁw_MR). 39

Ei(w)mrL[l_nFD(ﬁw_ML)]

+TRII-Nep(ho—pur)], (3.5 For the symmetrical coupling the dc current running
through the system can be calculated from the spectral func-

wherenp is the Fermi-Dirac distribution function. . 2 - .
. . . . = + (3.
In systems without translational invariance the electron-tIon Alw) =G~ (0) + G (w), resulting from Eqs(3.2) or

phonon interaction has a nonzero Hartree contribution to thés'g)’ by the following simple formula’

electron self-energy, which gives an additional polaron shift of [ dha

of the resonant levef The self-consistency with respect to =77 | > A(w)[Nep(ho— ) —Nep(ho— ur) -
redistribution of charges, included in a Hartré@oulomb ™

term, has been mentioned in the p&st In our studies, (3.10

focused on many-particle effects, we neglect the Hartreg, the one-electron approacfieboften a Landauer formula
term and take the electron self-energy in the Migdalyery similar to Eq.(3.10 is used, wherd\(w) is substituted
a_lppromeatmﬁ >(see also Fig. )2 Then the correlation func- by an equilibrium transmissivity (w). In finite-density non-
tionsX S (w), 3¢ () can be written as follows: equilibrium systems the spectral function can differ from its
s equilibrium form. Then the equilibrium transmissivity cannot

< _ 0, - — -, be applied and the NGF method and the NLCE method, de-
e (@)= j 2 MG (0= @)D (o) scribed below, are at hand.

M2fa<(
=MAG™ (0= wo)nge(wo) C. NLCE description of transport

+ G~ (0t wo)[ 1+ nge(wo) 1}, In application of the NLCE to our system, we explicitly
L evaluate the first- and second-order linked cluster
- do ., —_ — coefficient$® F,, F, in Egs.(2.4), (2.6), which can be found
S(w)= J EM G (0—w)D™(w) from the cluster term8V;, W, in Eq. (2.1) (see also Fig. R
Thereby we generalize the equilibrium results of Mdfian
=M2{G” (w— wg)[1+ Nge(wp)] and Dunfi® for electron-phonon interactions to nonequilib-
+G” (w+ wo)Nge( o)} 36 MMM

In Fig. 2 we show a diagrammatic expansion of the Dyson

wherengg is the Bose-Einstein distribution function. In Eq. €quation for the electron Green functi@ in the present
(3.6) free phonons in equilibrium are considered for simplic-Problem. We neglect here and in the calculations the Hartree

ity. The self-energy propagatol,®(w) can be obtained by term and diagrams dressing phonon lifk$he last approxi-
Egs.(A6) and (A7). mation could be possibly done for extended phonon modes,

The solution of the KB equation@®.2) can be expressed where the phonons can be also simply taken in equilibrium.
as a pair of correlation functior@=(w), G (), which can If dressing is important, then also a fully self-consistent pho-
be formally written as in equilibrium Iéq(AS): ’ non dynamics, with a proper relaxation mechanism, should

be included. In the expansion in Fig. 2 all diagrams with

G (w)=A(0)f(w) noncrossed phonon lines contribute to the Green function
' approximated by the Migdal self-enefgyin Eq. (3.6). The
G™(w)=A(w)[1—f(w)]. 3.7) remaining diagrams with crossed phonon lines form the ver-

tex corrections? We can identify here the diagrams corre-
Here both the spectral functioh(w) and the electron distri- sponding to the clusterg/,, n=0,1,2, introduced in Eq.
bution functionf(w) are nonequilibrium quantities in the (2.1). The zeroth ternW is just the free Green functioB,.
presence of the dc bias. From E(3.7) it becomes clear that The first-order clusteW, is given by the first-order diagram
static nonequilibrium systems can be represented by any twwith a single-loop self-energy. The second-order clugtgr
functions fromG=(w), G”(w), A(w), f(®). is formed by three second-order diagrams denoted here by

In nonequilibrium the distribution functiof(w) differs Wy pc-

from the Fermi-Dirac form already in the absence of inter- The nonequilibrium correlation functiol®~(w), G” (w)
actions. In this trivial case it can be immediately writtenin Eg. (2.3 or the spectral functioA(w) in Eg. (2.5 can be
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))’N"\g method, we have numerically checked the sum rule
) * J(dw/27)A(w)=1 in the examples presented below. The
dc current can be calculated from the correlation functions
G~ (w) or the nonequilibrium spectral functiok(w) [cf.
Eqg. (3.10], just as in the NGF method.

W2a Wa2b W2c

IV. NUMERICAL RESULTS AND DISCUSSIONS

. . . . Here we present numerical results computed with the
FIG. 2. Diagrammatic expansion of the Dyson equation for theN| . CE and NGF methods for the tunneling model of the

Green functionG in the electron-phonon interaction. All diagrams previous section and discuss the limitations of these ap-
with noncrossed phonon lines contribute to the expansion of th‘f:)roaches.

Green function with the Migdal self-energy. The remaining dia-
grams form vertex corrections to this expansion. Diagrams contrib-
uting to the zeroth-, first-, and second-order clusters are denoted ) ) o
here byW, Wy, andWa, p . . Consider first the limit of low electrofhole) concentra-
tion, ngp—0(1), where the one-electron methods work

) ) ) NS successfully~* Here also the two NLCE approaches for the
obtained directly from the correlation f“<”§t'°'W1f2 (@), correlation functiong2.3) and for the spectral functiof2.5)
found in the Appendix B. To this goaV; ;" (w) must be  coincide. Physically, this limit corresponds to the case when
transformed into a time domain and divided by the free corthe electron level in the quantum well is far abotelow)
relation functionsGy'~(1—2). Then the exponentials in the Fermi level in the reservoirs, so that the problem can be
Egs.(2.3) and(2.5 can be constructed, which are multiplied solved as if only one electraimole) is present in the system.
by Gg'~(1—2). The resulting full correlation function The LCE method gives for the casgp,—0 the following
G='7(1-2) can be easily transformed back to the frequencyexact solution for the causdretarded for one electron
representation. As a test of the results obtained by the NLCBreen functioff in the time representation:

A. Spectral properties

G(t)= Go(t)e—g{[nBE(hwo)+1](1—ie*mwo‘wnBE(ﬁwo>(1—iemwow—iﬁwot},

i .
Go(t)=— 7 B(t)e! 1210, (4.)

where Gy(t) is the free electron propagat¢8.3). After a

Fourier transform ofG(t) to the frequency representation,

the exact spectral functioA(w) can be obtained as in Eq. 0.6
(AB).

In Fig. 3 we show the equilibrium spectral functidifw) 009
in the limit n.p— 0, calculated by the LCE method in Egs.
(4.1) and the NLCE and NGF methods discussed in the pre-
vious section. Numerically this limit is approached by sub-
stituting in the hybridization self-energi€8.5 the Fermi-
Dirac distribution functions in the reservoirs by the value
Nep=0. The other parameters atg=15 meV,I'=8 meV,
hwo=30 meV,g=0.25, andT=70 K. The Lorentzian free 0.0
solution is shown by the dotted line, the exact solution in -60
Egs. (4.1) is shown by the dot-dashed line, the first-

(secondy order NLCE solution corresponds to the thick . .
(thin) solid line, and the NGF solution with the Migdal self- . FIG. 3. .The SpeCtrgl funCt'(.)'A.(w) for the tunneling model

. - . . discussed in the text in the limihp—0. The parameters are
energy is drawn by the dashed line. In the interacting SOIU'E0=15 meV,I'=8 meV, fiwp=30 meV,g=0.25, andT="70 K.
tions a polaron shift of the central peak down to lower ener-rpq free solution is shown by the dotted line, the exact solution is
gies can be seeita different shift would result in the

Y shown by the dot-dashed line, the firésecond) order NLCE so-
presence of the Hartree teffn Here also characteristic sat- | on corresponds to the thidithin) solid line, and the NGF solu-

e"ite peaks (Sidebaﬂd)s can be 0b$erved, with energies (ion with the Migdal self-energy is drawn by the dashed line. The
shifted from the main peak by multiples of the phonon en-exact and NLCE solutions practically coincide everywhere, but the
ergy fiwo. The magnitude of these satellites and the polarorposition of the first satellite, which we present magnified in the

shift of the main peak increase with the strength ofinset. The solution of the NGF method for the Migdal approxima-
interaction? It is interesting that the NLCE solutions are tion for the self-energy gives considerably worse results.

031

A(g) [meV-1]

90
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FIG. 4. The equilibrium spectral functioA(w) calculated by FIG. 5. The nonequilibrium spectral functioh(w) calculated

the NGF and NLCE methods for the parameters of Fig. 3 but withby the methods and the same parameters as in Fig. 4. Here the bias
a finite density of particles corresponding to the standard form ofs chosenu, = — ugr=60 meV. Note that the spectral function be-
the Fermi-Dirac distribution. Here the exact solution is not avail-comes symmetric for both NLCE and NGF methods, since the level
able. We present only the first-order solutions, since the seconds approximately half populated here. In the insets the nonequilib-
order solution is problematic in the presence of the Fermi sea. Thgum correlation functionsc<(w), G~ (w) are shown, which are

solution of the NGF method with the Migdal self-energy gives for the present parameters close to each other’s mirror images.
again a quite different satellite structure.

order NLCE solution can be calculated without major

practically indistinguishable from the exact solution. In thetroubles, but the second-order solution appears to be prob-
inset we show tiny differences between the exact and NLCHematic at moderately strong interactions and in the presence
solutions in the position of the first sideband. The small dif-of the Fermi sea, similarly as the original LCE metH8dn
ference between the exact and NLCE solutions can be ethis finite-density case the exact solution is no longer avail-
plained by the fact that the analytical structures of the expoable, but from the similarity of Figs. 3 and 4 it can be ex-
nent in the exact solutiof.1) and the NLCE solution with pected that it is close to the presented first-order NLCE so-
the |:/1* coefficient in Eq(2.6) show minor differences for the lution. We can observe that this NLCE solution gives here
presently used parameters ¢,~4I'). Quite remarkably, sharper satellites than in Fig. 4. The NGF solution with the
the solution of the NGF method with the Migdal approxima- Migdal self-energy is again very different.
tion of the self-energy, shown by the dashed line, leads to a The problems of the second-order solution result from the
significantly different satellite structure. Especially the dif- fact that the relevant expone;(t) in Egs. (2.6) has a
ferent distance of the satellites from the main peak is seerpositive real part which rapidly grows withand cannot be
Similar differences have been also found on a two-levediminished for larget by the prefactoq(t) in front of the
model and a continuous model, in the presence of the Ferngixponent. Similar growth is present also in the first-order
sea, with an electron-phonon interactin. solution, but its limitation becomes serious for much stronger

The situation with a nearly empt§ull) level appears, for interactions or at low temperatures. It is not clear whether
example, when phonon satellites are measured in the tail ¢his fast growth could be renormalized in some way, as in
the resonant current through the le¥élhese limit popula-  other similar methodd! Here we show at least the reason-
tions can be hardly realized in such investigations for low-able solutions resulting from the present form of the NLCE
energy(acousti¢ phonon®**or when the bands coupled to method.
the level are too wide. The WBL approximation used here is We can approach also the nonequilibrium situations,
well suited to simulate these more general situations, whichvhere both the spectral functioh(w) and the distribution
are beyond the scope of the transmissivity metifodghe  function f(w) can be strongly changed, as shown, for ex-
influence of filling of the level on the tunneling current has ample, in resonant tunneling through a Kondo imputfty?
been previously address@d? by the NGF method, but the In Fig. 5 the nonequilibrium spectral functioh(w) is cal-
present NLCE theory allows a more quantitative discussiorculated for our model for the parameters of Fig. 4 and the
of these phenomena in the presence of moderately strorgjasu, =— ug=60 meV. Only the first-order approximation
interactions. of the NLCE method is presented from the same reasons as

We can investigate this finite-density case, which physiin the previous figure. Here it is quite similar to the NGF
cally corresponds to moving the level within the Fermi sea insolution. If the left chemical potential crosses the position of
such a way that the limihgp—0 is fluently changed by the levelu ~Eg, the spectrum calculated by both the NGF
Nep— 1. Filling of the level depends on various factors, like and NLCE methods becomes symmetrically located around
matching of the bands of the reservoirs with the level or theghe noninteracting solution, because the level becomes half
ratio ', /T of the coupling constants to the reservdfrén  filled due toI', =I';. This particle-hole symmetry is re-
Fig. 4 the spectral function is shown for the same parameterected by a mirror symmetry of the correlation functions
as in the previous figure, but for the standard form of theG~(w), G~ (), shown in the insets. The symmetrization of
Fermi-Dirac distributiomgp (1, = ugr=uo=0), substituted the spectral function occurs for different biases evefif
in Egs. (3.5. For the presently used parameters the first-#I'g.'? We mention that in the WBL approximation the
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FIG. 6. The distribution functioifi(w) calculated for the param-
eters in Fig. 4. The solution for the noninteracting model is formed 02
by two Fermi-Dirac distributions shifted by the amoupt — ug|.

The NGF and NLCE show additional oscillatory structures, reflect- 0.1
ing increased electron population in the satellite peaks.

. . - . 0.0 ; ‘

satellites in the changing spectru(rﬁlgs. 4 and % can be 100 50 0 50 100 150
observed by the current probe only if they appear together

with the central peak in the energy window,(, ug). € [meV]

In Fig. 6 we present also the nonequilibrium distribution
function f(w), resulting directly from the correlation func- FIG. 7. The spectral function calculated by the first-order NLCE
tions(3.7) asf(w) =G~ (w)/[G=(w)+ G~ (w)]. The nonin-  method for the changed parameters: the level posign 25 meV
teracting distributionf 5(w) is formed by two Fermi-Dirac (thin horizontal dot-dashed linethe temperaturd =300 K, and
distributionsngp shifted by| . — ug| as shown in Eq(3.9). the interaction strengtg=1. The short-dashed lineipper draw-
The interacting distribution has been studied for weak intering) shows the one-electron limitep—0, the dashed linémiddle
action strengths in a model similar to odrBor the stronger ~drawing corresponds to the presence of the Fermi sea, and the solid
interactions investigated here we observe deep oscillations #i€ (lower drawing represents the nonequilibrium solution for
these distributions, which are quite similar for the NGF ang/. =80 meV. The polaron shift of the main peak, denoted by the
NLCE solutions. In the region of the central pefk~20 solid small triangle, becqmes smaller wh.en going from the first to
meV the two solutions are a little different and in the NGF 1€ 1ast of these solutions as follows;=fiwo, A;=fiwo/2,
solution an inverted population appears, showing a lack oka.thOM".Also the symmetry of the spectra with respect to the
L . main peak increases in this order.

relaxation inside the central peak. The local maxima of the

d_eep o_scnlatlons n the curqé(w)—f_o(wn in Fig. 6 coin- ¢ e levelEq. In the presence of the Fermi sea the polaron
cide with the positions of the satellites in Fig. 5. Thereforeqyi s smallerA )~ # wy/2, due to filling of the level. In this
these oscnlatory_ structures refle_ct increased nonequlhbng olution also the peaks appear to be sharper and higher than
electron popglatlon in the satelll|te peaks. We have studie the one-electron limit. In nonequilibrium the level be-
_also t.””g‘f"”g systems  with — an ele_ctron-elect_rpncomes even more filled by electrons, and as a result the shift
interaction,” where these structures show a different ability g, yhe gecreases to abonb~hwy/4. As the level filling

of this interaction to equmprate the system to an 'ncrease%pproaches one-half, a symmetrization of the peak heights,
temperature, given approximately hEAT~|ML_“F?|' with a center in the maiffirst) peak, can be also observed.

To present in a more clear way the results obtained by the

NLCE method, we show in Fig. 7 the spectral function cal- -

culated by the first-order NLCE for the changed parameters: B.1-V characteristics

the level positionEy=25 meV, the temperaturé= 300 K, In many experimental resonant tunneling systems the
and the interaction strength=1 (we have realized from bands for the reservoirs are narrow. As a result the current
numerical analysis that at these temperatures the NLCE igrough the level resonantly falls down when the moving
reliable for stronger coupling The short-dashed lineipper  bands with a dc bias no longer mismatch the level. In our
drawing shows the solution for the one-electron limit model the WBL approximation is applied and so the tunnel-
nep— 0, which can be also obtained by the LCE metfiod, ing current does not resonantly fall down. Nevertheless, the
the dashed linémiddle drawing corresponds to the presence tunneling current through the satellites can be still observed
of the Fermi sea, and the solid lirflower drawing repre-  on the background of the current through the level.

sents the nonequilibrium solution far, =60 meV. All the In Fig. 8 we show thd-V characteristics of the present
solutions in Fig. 7 differ by the polaron shift of the main model calculated from Eq3.10 for the parameters in Figs.
peak, denoted by the solid small triangle, with respect to thé—6 and the bias in the interval<Qu, = —ugr<70 meV.
position of the level, shown in the figure by a thin horizontal Since afT =70 K the temperature spreading prevents a good
dot-dashed line. Fog=1 the one-electron solution has a observation of the tunneling through satellitese the insgt
polaron shift down to lower energies equal the phonornwe have calculated thieV characteristics also for=30 K,
energy A,=7%w,, So that theirst satellite is at the position presented in Fig. 8. At this temperature clearly separated
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isfied. In fact the limitingg is also dependent oh (see Fig.
7), so that the total region of validity is located ig,{",T)
T=30 K space. The inequalit/ <kT is determined by new physical
effects, resulting, in the presence of interactions, from a high
o gradient of electron concentration in the region of the cou-
05! / f:mx ] pling broadened level. Such effects can be accounted only by
05 iterative solutions, which sum infinite series of Feynman dia-
grams. In general the NLCE.CE) method approximated by
0.0Y—s——s—=0 low-order clusters can only describe physical systems where
B [meV) the relevant physics is qualitatively included already in the
0 20 20 60 30 Iowegt Feynman diag.rarr(so phqselike transitionsWe do
uL [meV] not give a more detailed analysis here, but hope that future
works will further clarify the mentioned problems.
FIG. 8. Thel-V characteristics for the example in Figs.4—6, the

temperature T=30 K, and the biases in the region
0<u=—ur<70 meV. The noninteracting soluticilotted ling V. CONCLUSION
is structureless. The first-order NLCE solutitolid line) and the
NGF solution (dashed ling show bumps, reflecting tunneling We have generalized into nonequilibrium the LCE
through individual peaks. In the inset the solution To=70 K is  method for Matsubara Green functidh®y analytical con-
presented, where bumps, are not seen due to temperature smearitiguation as in the NGF methddThe resulting stationary

) _ ) ) version of the NLCE method in the first cluster approxima-
bumps in the interacting solutions for the current can b&jon can reasonably describe nonequilibrium finite-density
observed, when the chemical potentials of the reservoirgystems with moderately strong interactions. The second
cross the main peak or the satellites. In the current one bumgyster approximation of this method becomes problematic in
is present above and one below the central region of th@njte-density systems as the original LCE metHbodnd
current (u ~25 ueV). The lower bump f ~10 ueV)re-  presently it is not clear to which extent this failure can be
sults from the polaron shift of the main peak in Fig. 4. This gyercome.
bump is slightly different in the NLCE and NGF solutions,  The NLCE method has been tested on a simple resonant
because these two solutions give a little different polarorynneling model with an electron-phonon interaction in a dc
shifts. In fact contributions to the current from the main peakpjas. Numerical results for the nonequilibrium spectral and
and the first satellite below it cannot be well distinguishedgistribution functions have been obtained in the first order
for the present parameters, because these peaks are approyfig, in the weak density limit, in the second order of the
mately at the same distance, but opposite directions, from th@yster approximations. From these nonequilibrium spectra
equilibrium position of the Fermi level. Therefore the main the dc resonant tunneling current has been found. The results
peak is crossed by the left chemical potential moving up afyere compared with the solution of the standard NGF
the same time when the first satellite below it is crossed anethod with a M|gda| Se'f-energy_ For intermediate interac-
the right chemical potential moving down. The second bumpjon strengths the first-order NLCE is more precise than this
(n~40 peV) appears when the chemical potential  approximate NGF method, which neglects crossed Feynman
crosses the position of the first satellite above the main pealgiagrams. In the limit of a weak density of particles this has
At even higher biases the interacting solutions for the currenpeen checked by comparison with the exact solution of the
approach the free solution and all solutions saturate to th9r0b|em_ Spectra have been obtained for many_partide sys-
valueel'/4%, which is the prefactor in formulé3.10. In ac  tems with an electron-phonon interaction with intermediary
linear response problems or general time-dependent situghteraction strengths and in general nonequilibrium condi-
tions the two methods should give more different SO|Uti0nS.tions_ Unfortunate|y, here the second-order NLCE appears to

Let us briefly discuss the failure of the presented methodsye inapplicable in the present form.

It is evident that the NGF solution in the Mlgdal approxima- We would like to investigate by the NLCE method also
tion gives results different from the exact solution becausgime-dependent quantum systems inRefs. 36 and 37and
the crossed diagrams in Fig. 2 are neglected there. Thgyised electric field® We believe that these studies could

wrong shift of satellites in this solution has been also objead to a deeper understanding of nonequilibrium quantum
served elsewhereé. The limitation of the NLCE (LCE) systems with moderate|y strong interactions.

method in systems with many patrticles is different from the
approximate NGF method, but it is also serious. Particularly,
the Green functions obtained in such a way do not fulfill
automatically Herglotz propertiegnegative densities of
states can appeaand the higher-order cluster approxima- The author would like to express many thanks to A. P.
tions even do not seem to give a convergent solution at indauho for a short hospitality in DTU Lyngby, many com-
termediary interaction strengths and in the presence of thments, and corrections in this work. Also he would like to
Fermi sea. Based on our numerical results we estimate #bank B. Velickyfor useful discussions. He is grateful to P.
least the region of validity of the first-order cluster approxi- Streda and J. Petzelt for help with finding financial support
mation in NCLE. We have found that this method can giveof this work. The numerical part of this work has been done
reasonable results, if the inequalitigs:0.5,I'<kT are sat- on CRAY Y-MP EL in the Institute of Physics, Prague.
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APPENDIX A

Here we present some relationships valid for Green func- Nep(hw)=

tions (self-energy. The causal fermion@=¢) or boson
(O=A) Green functions in real times are definedbtem-

eﬁw/kTi 1 !

and the spectral function is defined by

perature Matsubara Green functihsre defined analo- Ak, 0)=—2ImG'(k,0) =G~ (k,0) = G=(k,»).
gously (AB)
. [ " ) ) The retarded Green function can be calculated from the
G(1,2=- 5<T[0(1)0 (2)1), j=(r;.t) (j=12). spectral function/A6) by the Hilbert transform
A r * do A(ko)
Correlation functions are related to these causal functions as G'(k,w)= ﬁxz o—wtis (A7)
follows:
i2GY(1,2=G"(1,2=(0(1)0(2)), t;>t,, APPENDIX B

FihGY(1,2) We evaluate the cluster coefficieri¥y,, Wy, for the
above-discussed resonant tunneling model with the electron-
=G<(1,2)=<OT(2)O(1)>, t,<t,, (A2) phonon interaction. These correlation factors result by appli-
cation of LW rule$® in the causal term#/, , written in Mat-
bara Green functions.
The lesser correlation factél; can be written in a fre-

i N _ quency representation as followsimilarly can be obtained
G'(12=-40(1-2)[G7(1,2+G"(1,2)], the higher partv;):

where the uppeflower) sign applies to fermion&osons.
The retarded and advanced Green functions are defined

i Wi 7 (0)=65 7 (0)M?[Go(— 0)D(w)]*Gi(w)
G3(1,2=—-60(2-1)[G7(1,2+G<(1,2], (A3) _ _
h [ ] +GH(0)M3G5 7 (w—0)D=) () G(w)
wheref(t)=0, t<0, and 6(t)=1, t=0. . 2 N TS~ <(>)
In equilibrium and space homogeneous systems the Green +Go(@)MGo(w—w)D(0)]'Gy ™" (w),
functions depend only on the difference of coordinates (B1)
(r,t)=(r,—r5,t;—t,), so that they can be easily Fourier

transformed to thekw) representation as follows: where the bar over the frequency variable means

integration over this variable. The propagators

[Go(w—w)D(w)]"2 can be found from the correlated parts

Gy ) (w—w)D=*)(w) by the Hilbert transforn{A7). The
(A4)  free but nonequilibrium correlation functions and propaga-
The equilibrium fermion and boson correlation functions cantors for electrons, which are necessary in E81), are in

G(k,w):f d“rf dt @t RG(ri—ryit —ty).

be expressed as Egs.(3.3) and(3.8). The phc_)non functions can be evaluated
from Egs.(A5) and (A7), with the use of the free phonon
G=(k,w)=ng g(hw)Ak,»), spectral functiort®

The second-order coefficien®/; , W, are formed by

> _ — 2 2

G (ko) =[15ne g(hw)JAK.w), (AD) 00 terms depicted in the diagram in Fig. 2. The first one
whereng andng denote the Fermi-Dirac and Bose-Einstein W, , which corresponds to two sequent scattering processes
distributions, of first order, results as

W57 (0) =G5 ™ (0)M Go( 0 — ) D () °G3(0)M?[ Go( - ©)D () ]*GE(w)

+Gh(w)M?G5 (0= ©)D <)) G )M’ Gy 0— ) D(w) |*GY(w)

+Gh(w)M?[Go(0— 0)D(0)]'G5 *(0)M[ Go(w— ©)D(w) 1*G3(w)

+GH(0)M2[Go(w—®)D(0)]'Gh(0)M2G5 (0~ 0)D~)()Gi(w)
+GY(0)M2[Go(®— ®)D(0)]'Gl(0)MGo(w— 0)D(0) 'G5 (). (B2)

The second diagram corresponds to a two-phonon sequent scattering without crossing of phonon lines. 'Iw§[fﬁa7rms
result in the form
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W ™(0) =G5 " (@)MW;(0— 0)D(w)]PGY(0) + G @)M?W; *)(0—0)D=)(w)Gi(w)
+GH(@)MAW, (00— 0)D(0)]'Gy (), (B3)

where the functionV; is the same as in EqB1). Again the propagator terni$V;(w— w)D(w)]"? can be found from the
correlated partsV; ™) (w— w)D <*)(w) by the Hilbert transform(A7).

Finally the third diagram\,. corresponds to a two phonon sequent scattering with crossing of phonon lines. Analytical
continuation can be performed as ustrabut the mixed structure of indices from crossed lines leads to analytical terms with
a more complex structure. In particular it is necessary to introduce propagators for each correlation function separately as
follows:

- ;i—®(1,2)G<(>>(1,2)EG<(>>r(1,2), G31,2=G"%(1,2+G~%(1,2),
;L—@(2,1)G<<>>(1,2)EG<<>>a(1,2), G'(1,2=G""(1,2+G~"(1,2,
- %—@(1,2)D<(>)(1,2)E D<*)(1,2, D*1,2=D"%1,2-D~%1,2),

%@(2,1)D<<>>(1,2)s D<(*)2(1,2), D'(1,2=D""(1,2-D~'(1,2). (B4)
Then the correlation pakt/;\~ for the third diagram results in the form
W57 (@) =M*G(w—01)D~ ) (0) D= (01) G0~ 0)G; (0 — w1~ w)

~M*G5 (0= 01)D¥2)D'(01) Gy (0= wy) Gy (0= w1~ wy)

+M*2Re[ G (0~ w1) D~ (1) 1D~ (0,) G5 (0~ w,)Gg (0~ w1~ )

+M2Re[G; (0~ 01)D ™ (01) 1D~ ()G (0~ 05) G5 (0~ w1~ wp)

+M*2Re[G; (0~ w1)G ™ (0~ 01~ ) ]D"7)(0,)D7 (1) G5 (0~ w,)

+M*2Re[Gg (0~ 1) G~ (0~ 01~ ) ID=7(02)D~(01)G; 7 (0~ w,)

+M“2Re[iG (0~ 01)D ™" (01) G w— 01~ 0,) D~ (w2) G5 (0~ w))

+M*2Re[iG; (0~ 01)D~"(01)G” (0~ w1~ 02) ID~7(02) G5 (0~ w)). (B5)
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