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A linear response formalism is developed for evaluation of transport coefficients in quantum many-particle
systems. The method is based on a systematic linearization of nonequilibrium Kadanoff-Baym transport equa-
tions in anintegral form in ac electric fields. Simple and consistent approximations can be performed in the
resulting set of transport equations, which replace vertex equations in the Kubo formalism. The method is
illustrated by the example of an ac and dc conductivity and conductance for a quasi-one-dimensional electron
system with an electron–phonon interaction for three-dimensional acoustical phonons. After approximations
standard in metals, the solved transport equations coincide with the Holstein equation.

I. INTRODUCTION

Transport phenomena in quantum many-particle systems,
in particular with a restricted geometry, cannot be fully un-
derstood without quantum transport theory, which would be
simple and reliable, but at the same time powerful enough to
avoid inappropriate approximations. The nonequilibrium
Green’s functions formalism~NGF! of Kadanoff and Baym1

and Keldysh2 can faithfully describe quantum systems in
nonequilibrium.3 Unfortunately, the complex structure of the
theory involving double time structure was slowing down an
application of NGF. Therefore, much effort has been devoted
to reduce NGF in strongly nonequilibrium systems to a
single time transport theory.4

Very successful are applications of the NGF to a deriva-
tion of linear response formalisms of a general validity,
where usually the double time structure can be avoided. In
NGF the Dyson equation in complex times and in the pres-
ence of external fields is analytically continued to real
times.5 This gives a set of transport equations for nonequi-
librium correlation functions in either adifferential1 or an
integral form.6 Linearization of these transport equations in
terms of the external fields produces new equations, from
which the linear response coefficients can be found.

In equilibrium systems these theories can be compared
with the complementary approach of the Kubo formula,7

which expresses the linear response in terms of a special type
of a two-particle Green’s function. One way of its actual
determination is to linearize the one-particle Matsubara
Green’s functions8 with respect to the external fields. This
gives a Bethe-Salpeter equation9 for the two-particle Green’s
function of complex times. Its solution can be, after an ana-
lytic continuation to real times, identified with the Kubo for-
mula with minimal vertex corrections.9

Several works followed the way of linearized NGF with
the goal of developing a simple consistent scheme of incor-
porating approximations for carrier scattering. Linearized
Kadanoff-Baym transport equations in adifferential form for
dc electric fields have been used by Prange and Kadanoff10

for an electron-phonon interaction. Ha˝nsch and Mahan11

have elaborated and applied this approach. Their results re-

produced correctly the Holstein equation12 for the electron-
phonon scattering in the Migdal approximation. Chen and
Su13 have tried to augment this method to achieve a proper
bookkeeping of the many terms appearing as a result of the
approximate linearization of thedifferential form. This ex-
tension is unavoidable for more complicated types of scatter-
ing. Another generalization of the method11 is to the case of
the ac electric fields, by Wu and Mahan.14 The last method
does not explicitly coincide with the work11 in the dc limit
v→0, but the Holstein equation12 ~the Boltzmann limit! has
been acquired too. A gauge invariant form of thesedifferen-
tial equations has been recently presented by Levanda and
Fleurov,15 where the ac equations coincide in the limit
v→0 with the dc equations.

In this work we linearize quantum transport equations in
the integral form.16 This way is probably more flexible than
the differential methods,11,15 because some intermediate
steps can be avoided and the resulting system of equations
appears simpler. Theintegralapproach is also inherent to the
Kubo formula, but in our method one and two-particle points
of view are more clearly interconnected. This opens a possi-
bility to easily perform consistent approximations. When
testing equilibrium systems, the new method seems to agree
with the Kubo formula for minimal vertex corrections.9 The
approach can be applied in stationary nonequilibrium condi-
tions, and its possible extension to transient nonequilibrium
situations is ensured by its NGF origin.

We apply the new method to evaluate ac and dc conduc-
tivity and conductance for a quasi-one-dimensional~1D!
electron system, embedded in a three-dimensional~3D!
semiconductor and interacting with bulk acoustical
phonons.17 After standard approximations for metals, the
method gives the Holstein equation12 for this model. Its nu-
merical solutions show that belowT'1 K scattering of elec-
trons in a backward direction freezes out and the homoge-
neous dc conductivity, given solely by scattering in a
forward direction, goes likeT23. Similar phenomena appear
also in the homogeneous or inhomogeneous ac conductivity.
From the conductivity we evaluate an ac/dc conductance,
defined by an absorbed power in a locally excited part of the
wire.18 The one-channel dc conductance acquires the stan-
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dard value 2e2/h asT→0 K. Above T'1 K this conduc-
tance sharply falls down, due to the presence of the back-
ward scattering. Here the ac conductance grows as a function
of a frequency until the backward scattering becomes dis-
turbed.

The paper is organized as follows. In Sec. II we develop
the new linear response method from the quantum transport
equations in the integral form. We linearize these equations
and explain how transport coefficients can be evaluated from
the linearized transport equations in a frequency-momentum
representation. In Sec. IV we apply the new method to evalu-
ation of an ac/dc conductivity and conductance for a
quasi-1D electron system with an electron-phonon interac-
tion. In this section some numerical results are presented,
which might be of importance for mesoscopics. In Appendix
B we show how conservation laws result for the linearized
functions in the new method. The equivalence of the new
linearized transport equations with the Holstein equation is
also presented there for our model. Finally relaxation times
are evaluated from the solutions of the linearized transport
equations.

II. LINEARIZED KADANOFF-BAYM EQUATIONS
IN THE INTEGRAL FORM

Consider an interacting electron system excited by an
electromagnetic field. This system can be described by the
Hamiltonian

H5Hs1Hext,

Hext5eE d3r w~r ,t !r~r !2
e

cE d3r A ~r ,t !• j ~r !

1
e2

2mc2E d3r A 2~r ,t !r~r !, ~1!

whereHs is the Hamiltonian for the free system andHext
represents coupling to the fields, described by the scalar
w(r ,t) or the vector potentialA(r ,t). In the following we
will assume that the fields are weak, so that without loss of
generality the potentials can be used in the forms

w~r ,t !5w0e
2 i ~vt2k•r !1dt,

A~r ,t !5E0c
e2 i ~vt2k•r !1dt

iv
~d→0!. ~2!

The densityr(r ) and the current density operatorsj (r ) are9

r~r !5c1~r !c~r !,

j ~r !5
\

2im
@c1~r !“c~r !2~“c1~r !!c~r !#. ~3!

For our purposes it is appropriate to describe the system
by Green’s functions, time ordered along a curve in the com-
plex plane5 ~generalization of the Matsubara GF!. The elec-
tron Green’s function follows a Dyson equation in the inte-
gral or differential form. Its inverted solution looks like

G21~1,2!5G0
21~1,2!2U~1,2!2S~1,2!, ~4!

U~1,2!5d~ t12t2!S ef~1!2
e\

2cim
A~1!•~¹ r1

2¹ r2
!

1
e2

2mc2
A2~1! D ,

where the numbersj51,2 represent a pair of coordinates
(r j ,t j ). The fields~2! are characterized by the operator func-
tion U(1,2), which is implicitly present also in the self-
energyS(1,2) ~some GF relationships are summarized in
Appendix A!.

A. Formulation of the equations

Linear response coefficients can be precisely calculated
from the Bethe-Salpeter equation9 ~Kubo formula! or thedif-
ferential form of the Kadanoff-Baym equations.1 Our start-
ing point in the linearization scheme is theintegral version
of the Kadanoff-Baym transport equations~A10!.

The NGF origin of these equations allows their applica-
tion to strongly nonequilibrium systems. Here for simplicity
we consider that the studied system is in stationary nonequi-
librium conditions, maintained by the external fields and by a
contact with reservoir. Then initial condition contained in the
functionG0

, dies out and the nonequilibrium transport equa-
tions ~A10! become simplified as follows:

G,~1,2!5Gr~1,3̄!S,~ 3̄,4̄!Ga~ 4̄,2!. ~5!

The equation forG. results by the exchange ofS, byS. in
~5!, so that only the equation forG, (dG,/dU) will be
written as a representative of the pair of equations forG,,
G. (dG,/dU ,dG./dU). The nonequilibrium propagators
Gr ,a(1,2) can be found fromG,,.~1,2! by ~A3!.

In this work we consider that the weak probe fields~2!
test anequilibrium system. Term by term variation of~5!
over these fieldsw or A gives a new set of equations

dG,~1,18!

dU~2!

5p̂U@Gr~1,2!G,~28,18!1G,~1,2!Ga~28,18!#2852

1Gr~1,3̄!
dS r~ 3̄,4̄!

dU~2!
G,~ 4̄,18!

1G,~1,3̄!
dSa~ 3̄,4̄!

dU~2!
Ga~ 4̄,18!

1Gr~1,3̄!
dS,~ 3̄,4̄!

dU~2!
Ga~ 4̄,18!. ~6!

In ~6! the functional derivative ofGr (a) was substituted by
the identity9

dGr~1,18!

dU~2!
5p̂U@Gr~1,2!Gr~28,18!#2852

1Gr~1,3̄!
dS r~ 3̄,4̄!

dU~2!
Gr~ 4̄,18!, ~7!

where the formulas
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dGr~1,3!

dU~2,4!
[2Gr~1,5̄!

d~Gr !21~ 5̄,6̄!

dU~2,4!
Gr~ 6̄,3! ~8!

and ~4! were used. The operator isp̂U51, (\/2im)
3(¹22¹28) for U5ew, 2(e/c)A, and the nonlinear term
in A2 is neglected due to weakness of the probe fields. The
single particle functionsG,,.,r ,a in ~6!, ~7! are taken in
equilibrium.

The linearized propagatorsdGr ,a/dU could also be ex-
pressed from the linearized correlation functions
dG,,./dU in an equivalency analogical to that between the
propagatorsGr ,a and the correlation functionsG,,. ~see
Appendix A!

dGr~1,18!

dU~2!
52

i

\
Q~1218!S dG.~1,18!

dU~2!
1

dG,~1,18!

dU~2! D .
~9!

If the expressions for the linearized correlation functions
from ~6! and its counterpartdG./dU are inserted into~9!,
then, after some algebra with theta functions, the right side
of ~7! results. Therefore~7! and ~9! are equivalent to each
other and are consistent with the transport equations~6!.

From the identity~9! an important relation between the
linearized functions results. If we take into account that
Gr(11,1)51, then it follows that

dGr~11,1!

dU~2!
52

i

\
Q~1121!

dA~1,1!

dU~2!
50,

~10!
dG.~1,1!

dU~2!
52

dG,~1,1!

dU~2!
.

In other words as 18→1 the two linearized correlation func-
tions degenerate into one. The linear response coefficients
can be found from the functiondG,(1,1)/dU(2). Toobtain
this function of one argument (122) ~for a stationary and
homogeneous system!, the more general function
dG,(1,3)/dU(2) with two arguments (123),(122) must
be found. Therefore the equivalency~10! usually does not
reduce the number of solved equations, but in some systems
it gives a hint to a possible simplification.

The coupled system of transport equations~6! and its
counterpart fordG./dU will be closed, if all functions are
expressed bydG,,./dU. This can be achieved in two steps.
First the functionsdS r ,a/dU should be represented by
dS,,./dU in a relation analogous to~A6! and~A7!, holding
betweenS r ,a and S,,.. Second the functionsdS,,./dU
must be expressed bydG,,./dU in the same way as relate
S,,. andG,,. for a given many-body approximation.

Let us see these relationships in more details. Generally
the electron self-energy is a sum of thesingular ~Hartree-
Fock or mean field! partSHF and theregular or collisional
part1 Sc . Both parts contribute to the self-energy propaga-
tors, but only theregularpart has nonzero contribution to the
correlation function of the self-energy

S r~1,3!5SHF
r ~1,3!1Sc

r ~1,3!, S,~1,3!5Sc
,~1,3!.

~11!

The linearized self-energy function fulfills the same relation-
ships

dS r~1,3!

dU~2!
5

dSHF
r ~1,3!

dU~2!
1

dSc
r ~1,3!

dU~2!
,

~12!

dS,~1,3!

dU~2!
5

dSc
,~1,3!

dU~2!
.

The Hartree-Fock self-energy, which is a mean field ap-
proximation local in time of the electron-electron interac-
tions, has the retarded part equal to

SHF
r ~1,3!5d~ t12t3!d~r12r3!E d3r̄ v~r12 r̄ !

3G,~ r̄ ,t1 ; r̄ ,t1!1d~ t12t3!v~r12r3!

3G,~r1 ,t1 ;r3 ,t1!. ~13!

This propagator self-energy can be linearized as follows:

dSHF
r ~1,3!

dU~2!
5d~ t12t3!d~r12r3!E d3r̄ v~r12 r̄ !

3
dG,~ r̄ ,t1 ; r̄ ,t1!

dU~2!
1d~ t12t3!v~r12r3!

3
dG,~r1 ,t1 ;r3 ,t1!

dU~2!
. ~14!

The collisional contributions fulfill the same relationships
as the related self-energy parts, namely~A6! and ~A7!

dSc
r ~1,3!

dU~2!
52

i

h
Q~ t12t3!S dSc

.~1,3!

dU~2!
1

dSc
,~1,3!

dU~2!
D .

~15!

Generation of linear response functions by a functional
derivative is known to lead in a safe way to many-body
conserving approximations1 ~conservation laws are
fulfilled9!. To ensure this mandatory consistency of the trans-
port equations in the presence of approximations, the same
approximative steps must be performed inS,,. and
dS,,./dU. This holds not only for the approximations,
which result by selecting an appropriate class of Feynman
diagrams in the self-energy,19 but also for auxiliary physi-
cally motivated approximations. This makes it possible to
keep under control a self-consistent structure of the one- and
two-particle levels of the solution. Some of these approxima-
tions are presented in the next section.

B. Frequency representation

Weak probe fields can be resolved into Fourier compo-
nents ~2!, which can be considered to act on the studied
system independently. A linear response to composite weak
fields can be calculated from a linear superposition of re-
sponses to Fourier components of these fields. Since the
weakly excited system remains space and time translation-
ally invariant, it is enough to know any linearized function
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dF(1,3)/dU(2), from the transport equations~6!, for the differences of arguments (123), (122). Our results can be more
simply compared with the work of Holstein,12 if we define the Fourier transform in a little unsymmetric way

dF~1,3!

dU~2!
5E

2`

` dv1

2p E
2`

` dv2

2p E
2`

` dk1
2p E

2`

` dk2
2p

dF

dU
~v1 ,k1 ;v2 ,k2!

3expF iv1~ t12t3!1 iv2~ t12t2!2 ik1•~r12r3!2 ik2•S r11r3
2

2r2D G . ~16!

Internal arguments of the functions (v1 ,k1) are analogical as inG(k,v). External arguments (v2 ,k2) are identical with those
in the fields~2!.

Application of the transform~16! to Eqs.~6! gives

dG,

dU
~k1 ,v1 ;k2 ,v2!5Gr S k11 k2

2
,v11v2D S pU1

dS r

dU
~k1 ,v1 ;k2 ,v2! DG,S k12 k2

2
,v1D

1G,S k11 k2
2
,v11v2D S pU1

dSa

dU
~k1 ,v1 ;k2 ,v2! DGaS k12 k2

2
,v1D

1Gr S k11 k2
2
,v11v2D dS,

dU
~k1 ,v1 ;k2 ,v2!G

aS k12 k2
2
,v1D , ~17!

where the functional derivative ofGr was substituted by

dGr

dU
~k1 ,v1 ;k2 ,v2!5Gr S k11 k2

2
,v11v2D

3S pU1
dS r

dU
~k1 ,v1 ;k2 ,v2! D

3Gr S k12 k2
2
,v1D ~18!

and the momentum ispU51, \k1 /m for U5ew,2(e/c)A.
Later we will also use the relationship~15! in a frequency

representation

dSc
r

dU
~v1 ;v2!5

1

2pE dv̄

v12v̄1 id

3S dSc
.

dU
~v̄;v2!1

dSc
,

dU
~v̄;v2! D .

~19!

Here we have written only the frequency variables.

C. Transport coefficients

Transport coefficients can be easily calculated from the
solution of the transport equations~17!. For example the to-
tal current density induced by weak probe fields results by
averaging of the velocity of electrons over the perturbed state
of the system20

J~r ,t !5eK j ~r ,t !2
e

mc
A~r ,t !r~r !L

5Jcorr~r ,t !1Jdiam~r ,t !

5E d3r̄ dt̄ s~r2 r̄ ,t2 t̄ !•E~ r̄ , t̄ !, ~20!

where the definitions~3! have been applied. Averaging of the
current density operatorj gives the correlation currentJcorr
and averaging of the product of the vector potentialA with
the density operatorr gives the diamagnetic currentJ diam.
The correlation current can be expressed in a frequency-
momentum representation as follows:

Jcorr~k,v!5eE d3\ k̄

~2p!3
\ k̄

m E dv̄

2p
G,~ k̄,v̄ !

5eE d3\ k̄

~2p!3
\ k̄

m E dv̄

2p H G0
,~ k̄,v̄ !

1
dG,

dS 2
e

c
AD ~ k̄,v̄;k,v!

3S 2
e

c
A~k,v! D1•••J . ~21!

Combination of the formulas~20! and~21! together with the
relation between frequency components of the electric field
and vector potentialE5( iv/c)A gives the components of
the tensor for ac conductivity

53 11 037LINEARIZED QUANTUM TRANSPORT EQUATIONS: ac . . .



sa,b~k,v!5
i

v S n0e2m
da,b1 Pa,b

r ~k ,v! D ,
Pa,b

r ~k,v!5
2ie

v E d3\ k̄

~2p!3
\ k̄ a

m

3E dv̄

2p

dG,

dS 2
e

c
AbD ~ k̄,v̄;k,v!. ~22!

Heren0 is the concentration of carriers and the multiplica-
tion by 2 results from the summation over spin components.
In many situations only the diagonal elements of the conduc-
tivity tensor are nonzero.

Another physical property which is often required is the
polarizability of a quantum many-body system.20 It can be
calculated from the transport equations~17! as the linear re-
sponse to the scalar potentialf. The polarizability differs
from the correlation part in~22! by deletion of the momen-
tum prefactor and the substitution ofdG,/dA by
dG,/df. In the Appendix B we show how conservation
laws are fulfilled by the linear response functionsdG,/dA
anddG,/df.

The question remains whether the resulting linear re-
sponse coefficients are equivalent to those found by the
Kubo formula. To answer this question in full generality
would be quite hard, because different analytical structures
in both methods lead to different diagrammatic expansions.
Therefore more work is necessary in this direction in the
future.

III. ELECTRON-PHONON INTERACTION IN QUASI-1D

In order to see how the linearized transport equations~17!
can be applied, we find an ac/dc conductivity and conduc-
tance for a quasi-1D electron system. The model has been
introduced and studied in Ref. 17, where one-particle prop-
erties and the nonvertex conductivity and conductance have
been investigated. Later a multiband extension of the model
was also presented.21 In our work we evaluate vertex correc-
tions to the conductivity from Ref. 17 by the new linear
response method.

The system is a single-quantum-well wire formed in a
bulk semiconductor. The wire is extended in thez direction
and confined by a rotationally symmetric parabolic potential
in thex,y directions. The longitudinal motion along the wire
can be described by plane waves with wave vectors from a
1D band with a parabolic dispersion relation. The transverse
motion of electrons is quantized into harmonic oscillator
states. The electrons in this quasi-1D system are coupled to
longitudinal 3D acoustic phonons.20

Here we discuss for simplicity only transport in the lowest
state of the well. This one-band model can be described by
the modified Fro˝hlich Hamiltonian12,16

H5(
k

\2k2

2m
ak

1ak1(
q

\suqubq
1bq

1(
k,ql

ak
1ak2ql(qt

F~qt!M ~q!~bq1b2q
1 !, ~23!

F~qt!5expS 2
s0
2~qx

21qy
2!

4 D ,
M ~q!52V0uquS 1

2rcrystsuqu D
1/2

,

where the ground state of the well is characterized by the
wave function

c~x,y!5
1

s0Ap
expS 2

x21y2

2s0
2 D . ~24!

In ~23! s is the velocity of sound,s0 is the diameter of the
wire, rcryst is the density of matter, andV0 is the strength of
the electron-phonon interaction.20 The operatorak

1 creates an
electron with a 1D wave vectork in the transversal state~24!
and the operatorbq

1 creates an acoustical phonon with a 3D
wave vectorq5(qx ,qy ,qz5 l), qt

25qx
21qy

2 . In this work the
electron-phonon interaction in~23! as well as the probing
longitudinal field from~2! are not screened.

A. One-particle properties

Electrons and phonons in this system can be described by
1D-electron and 3D-phonon Green’s functions~see the Ap-
pendix A!. The influence of the quasi-1D electrons on the 3D
phonons is probably small, so that the renormalization of
phonons is neglected.22,12 In experiments the Fermi level is
usually high enough, which means that the electrons on this
level are much faster than sound. Therefore the Migdal ap-
proximation of the electron self-energy should be valid~pos-
sible breakdown is mentioned later!

S~k;t,t8!52 i (
ql ,qt

„F~qt!M ~q!…2G~k2ql ;t,t8!D~q;t,t8!.

~25!

Its correlation functionS, can be written as

S,~k,v!5
1

~2p!4
E dv̄ dq̄ l d

2q̄ t„F~ q̄ t!M ~ q̄ !…2

3G,~k2q̄ l ,v2v̄ !D,~ q̄ ,v̄ !

5E
2`

` dv̄

2pE2`

` dq̄ l

2p
A~k2q̄ l ,v2v̄ !

3A~ q̄ l ,v̄ !nF~\v2\v̄!nB~\v̄!, ~26!

where we have used the expressions~A5! and ~A9!. The
function A(ql ,v) can be found from thed-like spectral
function for 3D free phonons

AD~q,v!52p@d~\v2\vq!2d~\v1\vq!#

5
2pv

\s2A~v/s!22ql
2
dS uqtu2AS v

s D
2

2ql
2D

3QF S v

s D
2

2ql
2G . ~27!

In the second expression of~27! the amplitude of the trans-
versal momentumuqtu has been chosen as a new variable.
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Substituting the functionAD(k,v) from ~27! into ~26! and
performing the integration overqt , the functionA(ql ,v)
results as follows:

A~ql ,v!5Ci uvuv expH 2
s0
2

2 F S v

s D 22ql
2G J

3QF S v

s D 22ql
2G . ~28!

The correlations functionsS,, S. differ only by statistical
factors and the retarded self-energyS r can be calculated
from them as in the Appendix A.

We have numerically tested the non-self-consistent form
of the Migdal self-energy, called the first-order Tamm-
Dankoff ~TD1! approximation, which results from~26! by
application of free Green’s functions. These tests, with pa-
rameters in Table I, show that the magnitude of ImS r is
about 1022 meV, but the structure in ImS r has the width of
the order of meV. Therefore the self-consistent electron spec-
tral function should be sharply localized aroundEF , so the
renormalization constant is very close to one,Z0'0.99, and
the Migdal self-energy could be apparently substituted by the
TD1 self-energy. The tests also show that the TD1 self-
energy~26! depends very weakly on the wave vectork, be-
cause the momentum dependence for the effective phonon
spectral functionA is much weaker than that for the spectral
function for electronsA due to the smalls/vF ratio. There-
fore the TD1 self-energy can be further approximated by
keeping constant the integration variableq̄ l in A during the
q̄ l integration. Since the electron dispersion law in 1D has
two branches~aroundk'6kF), the q̄ l integration can be
divided into two parts. They naturally separate the scattering
in the forward and backward directions, for which the con-
stants inA can be chosen asq̄ l50 and q̄ l52kF . By this
approximation thek variable can be integrated out from the
electron spectral functionA(k2q̄ l ,v2v̄) in ~26!, so the
correlation functionS, becomesk independent

S,~v!5E
2`

` dv̄

2p

Q~\v2\v̄1m!

A2\2

m
~\v2\v̄1m!

3@F f~v̄ !1Fb~v̄ !#nF~\v2\v̄!nB~\v̄!,

~29!

F f~v̄ ![Ci uv̄uv̄ expF2
s0
2

2 S v̄

s D 2G ,

Fb~v̄ ![Ci uv̄uv̄ expH 2
s0
2

2 F S v̄

s D 22~2kF!2G J
3QF S v̄

s D 22~2kF!2G .
Here the functionsF f(v) andFb(v) are effective scattering
factors in the forward and backward directions. The above
substitutionspreserveinelastic character of the scattering in
this model. They are analogous to the momentum-indepedent
approximation of a self-energy,10 called also the first quasi-
classical approximation.

In Fig. 1 we demonstrate scattering of electrons in the
forward and backward directions. Contributions from these
two scattering channels to the self-energy in~29! are pre-
sented in the upper insets for parameters in Table I. In the
forward scattering phonons of very low momentaq̄ l'0 ~and
only these! can be excited. Therefore it is ImS forward

r (v)
Þ0 even very closely to the Fermi energy~see the right
inset!. In a strictly 1D system one-phonon scattering of elec-
trons in the forward direction is completely forbidden by
conservation conditions, so that the forward scattering can
reappear only in higher orders of a perturbation theory.23 In
the studied quasi-1D model, momentum conservation rules
are broken@see~28!#, so that a weakly inelastic one-phonon
forward scattering is present. In the elastic approximation the
forward scattering falls out completely.24

In the backward part ImSbackward
r a gap is present around

the Fermi level, where ImSbackward
r '0 at low temperatures.

The gap has a half-width 2skF ~see the left inset!, given by
scattering on phonons with momentaq̄ l'2kF . The distribu-
tion functiondnF(\v)/dv, from a conductivity formula, is
localized aroundEF and has the half-width\v'kBolT.
Therefore at low temperatures this distribution practically
does not overlap with the backward self-energy contribution

TABLE I. Parameters of the model.

effective electron mass m 50.0165 me

density~bulk GaAs! rcryst 54560 kg/m3

velocity of a sound s 55220 m/s
interaction constant V057 eV
diameter of the wire s0 57 nm
Fermi energy EF 520 meV

FIG. 1. Schematic draft of the electron scattering on acoustical
phonons in the quasi-1D system. In the insets we can see contribu-
tions to the imaginary part of the self-energy ImS r , as a function of
energy, from scattering in the forward and backward directions. A
linearized electron dispersion law has been used and the tempera-
ture isT51 K. AsT→0 K the Luttinger theorem is fulfilled, so that
Im S r(EF)→0. The dashed line represents a derivative of a Fermi-
Dirac distribution at the same temperature.
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Im Sbackward
r , so that the backward scattering freezes out be-

low the temperatureTf52skF /kBol ('14 K here!. At lower
temperatures, tails of the distributiondnF(\v)/dv have
only exponentially small overlap with the backward part of
Im S r and the forward scattering must dominate~here at
T'1 K!.

B. Two-particle properties

We can find the linearized transport equations~17! for the
present model, probed by the weak longitudinal electric field
A(r ,t)5E0c@e2 i (vt2k•r )1dt/ iv# (k is parallel toA and to
the wire!. This vector potentialA(r ,t) can represent one
Fourier component of the longitudinal electric field, which
appears below a slit irradiated by a laser beam.17

To keep the approach self-consistent, the Migdal approxi-
mation of the self-energy~26! must be applied also in linear-
ized self-energy functions from Eqs.~17!. In this many-body
approximation the functiondS,/dA looks like @we use a
simplified notation2(e/c)A→A#

dS,

dA
~k1 ,v1 ;k2 ,v2!

5E dv̄

2pE dq̄ l

2p

dG,

dA
~k12q̄ l ,v12v̄;k2 ,v2!

3A~ q̄ l ,v̄ !nB~\v̄!. ~30!

We have to perform indS,/dA all other approximations
applied before toS,. In ~29! the integration variableq̄ l in
the functionA is substituted by two rigid valuesq̄ l50 and
q̄ l52kF , for the forward and backward scattering, and the
q̄ l integration is performed around these values. If the same
substitutions are performed in~30!, then thek1-independent
function dS,/dA results

dS,

dA6
~v1 ;k2 ,v2!5E dv̄

2p
nB~\v̄!

3S F f~v̄ !
dG,

dA6
~v12v̄;k2 ,v2!

1Fb~v̄ !
dG,

dA7
~v12v̄;k2 ,v2! D ,

~31!

where thek1-independent~but the sign ofk1) linearized
functions are defined by

dG,

dA6
~v1 ;k2 ,v2!5E

6

dk̄ 1

2p

dG,

dA
~ k̄ 1 ,v1 ;k2 ,v2!. ~32!

Here the signs6 mean integration in the neighborhood of
the valuesk̄ 156kF , which correspond to the two branches
of the electron dispersion law in 1D. Note that these signs are
reversed in the second term of~31!. Thek1-independent lin-
earized propagators for a self-energydS r ,a/dA relate to
dS,./dA by ~15!. If Eqs. ~17! for the present model are
integrated as in~32!, then a new closed system of equations
for (dG,,./dA6)(v1 ;k2 ,v2) can be derived.

Let us see this directly. If the above derived
k1-independent linearized self-energy functions in~31! are
substituted in~17!, then on the right side of this equation the
variablek1 appears only in the pairs of Green’s functions.
Therefore, when thek̄ 1 integration from~32! is applied to
~17!, these pairs of Green’s functions can be integrated sepa-
rately from other terms. These integrals of bilinear combina-
tions of propagators and correlation functions are performed
below.

To simplify integrations of these functions, the dispersion
law for electronsEk can be linearized in the neighborhood of
the Fermi wave vectors as follows:20

Ek5
\2@~k7kf !6kf #

2

2m
'm6C0~k7kf !,

~33!

C05
\2kF
m

5\vF .

The same approximation has been done in the self-energy
~29! from Fig. 1. In fact at the Fermi level, where transport is
important, this approximation changes the self-energy very
little. The approximate propagator results

G6
r ~k,v!5

1

\v2Ek1m2S r~v!
'7

1

C0

1

k7a
,

a[kF1
\v2m1m2S r~v!

C0
, ~34!

and the functionsG6
a (k,v) and G6

,,.(k,v) can be ex-
pressed from~34!.

The integrals from bilinear combinations of the approxi-
mate Green’s functions can be easily evaluated

I 1
6~v1 ;k2 ,v2!

[E
6

dk̄ 1

2p
G6
r ~ k̄ 11k2/2,v11v2!G6

a ~ k̄ 12k2/2,v1!

8
1

C0
2E

2`

` dk̄ 1

2p

1

k̄ 11k2/27a~v11v2!

3
1

k̄ 12k2/27a* ~v1!

57
i

C0

1

~C0k27\v2!7~S r~v11v2!2Sa~v1!!
,

I 2
6~v1 ;k2 ,v2![E

6

dk̄ 1

2p
G6

,~ k̄ 11k2/2,v11v2!

3G6
a ~ k̄ 12k2/2,v1!

8 inF~\v11\v2!I 1
6~v1 ;k2 ,v2!,

I 3
6~v1 ;k2 ,v2![E

6

dk̄ 1

2p
G6
r ~ k̄ 11k2/2,v11v2!

3G6
,~ k̄ 12k2/2,v1!

82 inF~\v1!I 1
6~v1 ;k2 ,v2!. ~35!
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After the selection of one of the valuesk̄ 1'6kF , the inte-
grations in~35! can be directly performed. Extension of the
integration interval from one of the branches of the electron
dispersion law to the the whole real axis ofk̄ 1 makes prob-
ably only small errors.

These integrals can be used to define the new set of
coupled equations @analogously the equation for
(dG./dA6)(v1 ;k2 ,v2) results#

dG,

dA6
~v1 ;k2 ,v2!

5S 6
\kF
m

1
dS r

dA6
~v1 ;k2 ,v2! D I 36~v1 ;k2 ,v2!

1S 6
\kF
m

1
dSa

dA6
~v1 ;k2 ,v2! D I 26~v1 ;k2 ,v2!

1I 1
6~v1 ;k2 ,v2!

dS,

dA6
~v1 ;k2 ,v2!. ~36!

In ~36! the momentum prefactor is approximated by the
Fermi momentum and taken out of the integrals.

Application of the solution of~36! in the formula~22!,
little modified for the present case, gives the ac conductivity

s~k,v!5
2i\e2

v
vFE

2`

` dv̄

2p S dG,

dA1
~v̄;k,v!

2
dG,

dA2
~v̄;k,v! D . ~37!

Note that the corellation part of the conductivity~37! does
not cancel the diamagnetic term in~22!, due to the approxi-
mations of the integrals~35! ~see also Ref. 20!. Fortunately
the diamagnetic term does not influence the experimentally
accessible real part of the conductivity.

C. Reduction to one transport equation

In ~10! we have shown that

dG.~1,3!

dU~2!
→2

dG,~1,3!

dU~2!
as 3→1.

After a Fourier transform to the momentum-frequency rep-
resentation (k1 ,v1 ;k2 ,v2) in ~16!, this equivalency is not
fulfilled by separate frequency components, but only by their
integral over the frequencyv1 . It is interesting that thev1
integration could be effectively substituted in this role by the
k1 integration in~32!. If we apply in~36! and its counterpart
for (dG./dA6)(v1 ;k2 ,v2) the identity ~19! and the rela-
tions ~35! betweenI 1,2,3

6 , then after some little algebra the
mentioned equivalency results

dG.

dA6
~v1 ;k2 ,v2!52

dG,

dA6
~v1 ;k2 ,v2!,

dGr ,a

dA6
~v1 ;k2 ,v2!50. ~38!

Fulfillment of ~38! is a consequence of the quasi-local char-
acter of our interaction, which gives a very weak momentum
dependent electron self-energy. This dependence can be ne-
glected and the necessaryv1-energy integration, leading to
~10!, can be shifted to thek1-momentum integration, due to
the unambiguous pole relationship in~34!.

Relations~38! reduce the system of linearized transport
equations to one equation, which is derived here for the
electron-phonon interaction. By the relationships~38! and
the equivalency~19! the linearized propagators for a self-
energy can be expressed from~31! and its counterpart for
dS./dA6 as follows:

dS r ,a

dA6
~v1 ;k2 ,v2!52

1

2pE dv̄

v12v̄6 id E dv̄1

2p S F f~v̄1!
dG,

dA6
~v̄2v̄1 ;k2 ,v2!1Fb~v̄1!

dG,

dA7
~v̄2v̄1 ;k2 ,v2! D . ~39!

We can substitute the expressions~39! into the transport equation~36!, multiply both its sides by the inverted function
I 1

6(v1 ;k2 ,v2), and reorder terms. Then this single transport equation has the form

iC0@6C0k22\v21S r~v11v2!2Sa~v1!#
dG,

dA6
~v1 ;k2 ,v2!

56
i\kF
m

@nF~\v11\v2!2nF~\v1!#1E dv̄1

2p S nF~\v11\v2!1nF~\v1!

2
1nB~\v̄1! D

3S F f~v̄1!
dG,

dA6
~v12v̄1 ;k2 ,v2!1Fb~v̄1!

dG,

dA7
~v12v̄1 ;k2 ,v2! D1 i @nF~\v1!2nF~\v11\v2!#

3E dv̄

2p

1

v12v̄E dv̄1

2p S F f~v̄1!
dG,

dA6
~v̄2v̄1 ;k2 ,v2!1Fb~v̄1!

dG,

dA7
~v̄2v̄1 ;k2 ,v2! D . ~40!

Equation~40! is similar to the Holstein equation,12 derived for the electron–phonon interaction with acoustical phonons, but
in ~40! no limitation to the strength of the interaction has been applied. The validity of these equations is probably the same
as equations in Ref. 10.
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For not very strong interactions a pole approximation for a self-energy sometimes called the second quasiclassical approxi-
mation, can be applied. For weak interactions the quasiparticle spectrum can be substituted by a free particle spectrum. In~40!
this can be performed as follows:\v1'ek12m, (m[EF), \v̄1'ek12ek12ql

, and\dv̄1'\vk dql5C0 dql . This substitu-
tion diminishes the frequency variablev1 and reinstalls the integrated outk1 variable. It would seem that the frequency
variablev1 could be integrated out fromS r(k1 ,v1) at the beginning. Unfortunately, such an approximation cannot be
reasonably performed, because the self-energyS r(k1 ,v1) is strongly dependent onv1 , but weakly onk1 .

Substitution of the free pole values in the Eq.~40! leads to the following Boltzmann-like equation:

iC0F6C0k22\v21S r S ek12m

\
1v2D 2SaS ek12m

\
D GdG,

dA6
S ek12m

\
;k2 ,v2D

56
i\kF
m

@nF~ek12m1\v2!2nF~ek12m!#1E C0 dql
2p\

S nF~ek12m1\v2!1nF~ek12m!

2
1nB~ek12ek12ql

! D
3FF f S ek12ek12ql

\
D dG,

dA6
S ek12ql

2m

\
;k2 ,v2D 1FbS ek12ek12ql

\
D dG,

dA7
S ek12ql

2m

\
;k2 ,v2D G

1 i @nF~ek12m!2nF~ek12m1\v2!#E dv̄

2p

1

ek12m2\v̄

3E C0 dql
2p

FF f S ek12ek12ql

\
D dG,

dA6
S v̄2

ek12ek12ql

\
;k2 ,v2D 1FbS ek12ek12ql

\
D dG,

dA7
S v̄2

ek12ek12ql

\
;k2 ,v2D G .

~41!

The final formula for the conductivity~37! can be changed
similarly. We should also perform in~41! the linearization of
the electron dispersion law, to get an agreement with the
approximation applied at~33!. The performed approxima-
tions are summarized in Table II~the first/second row corre-
sponds to the forward/backward scattering!. In the Appendix
C a direct comparison shows that the Holstein equation in
the present system is identical to~41!.

D. Numerical results for two-particle properties

We have applied the transport equations~40! and~41! and
the Holstein equation~C3! to the present problem. The nu-
merical results of these equations are practically the same, so
we do not distinguish between them here. The results are first
discussed in physical terms. To this goal relaxation times can
be used~see their definition in the Appendix D!. We discuss
the average time between scattering events^ts& and the av-
erage momentum relaxation time^tp& separately for the for-
ward and backward scattering processes. Additional indices
forward, backwardare used at these times, which character-
ize fictitious systems with only one type of a scattering. In
most situations one of the processes dominates, so that dis-
cussion of separate processes is reasonable. After the intro-
ductory summary some numerical examples are presented.

In Fig. 1 we have seen that magnitudes of the functions
Im S forward/backward

r (ek) in the plateaus are of the same order.
This means that the rates for relaxing electrons from their
incoming states by forward and backward scattering are
similar. Averaging of 1/ImS forward/backward

r (ek) with the distri-
bution functiond f0(k)/dek , as in ~D4!, gives the average
times between scattering events^ts& forward/backward. At high
temperatures the structure in ImS forward/backward

r (ek) disap-
pears and it approximately holdŝts& forward'^ts&backward.
Below T'1 K this approximate equivalence fails, because
the time^ts&backwarddiverges

24 like exp(cT21), due to the fact
that the distribution functiond f0(k)/dek does not overlap
the plateaus in ImSbackward

r .
On the other hand, the electronmomentumis relaxed by

the forward and backward scattering very differently. For-
ward scattering does not change the sign of the electron mo-
mentum and practically preserves its magnitude (k8'k), so
the momentum is relaxed very slowly. Backward scattering
gives an opposite sign to the momentum and changes its
magnitude slightly, so the momentum is relaxed quite fast.
The different character of these scattering processes becomes
evident in the conductivity or equivalently in the magnitude
of the momentum relaxation timêtp&. Already at high tem-
peratures the two scattering channels have very different mo-
mentum relaxation timeŝtp& forward@^tp&backward. At low
temperatures it holds that^tp&backward'exp(cT21), similarly
as before.

These facts can be arranged as follows@see also comment
at Fig. 1 and Eq.~D6!#. At temperatures higher thanT'1 K
backward scattering dominates, so the total time^tp& is sup-
pressed approximately to the total time^ts&. BelowT'1 K
backward scattering freezes out and forward scattering domi-
nates. Thereforêtp&, given here practically only by forward

TABLE II. Scattering channels~approximate regions of param-
eters!.

k ql ek2ek2ql
ek2ql

6kF 0 6C0ql m1C0(6k2kF7ql)
6kF 62kF 7C0ql m1C0(6k2kF6ql)
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scattering, grows and becomes much larger than^ts&. The
times ^ts& and ^tp& are approximately in the same relation-
ship like the nonvertex and vertex conductivity. If vertex
corrections to the conductivity are included in our model,
they are not very important at high temperatures, while they
completely renormalize the conductivity at low temperatures.

1. Homogeneous conductivity

Let us first discuss the homogeneous conductivity
s(k50,v). At high temperatures the frequency width of the
distribution functiondnF(\v)/dv is broader than the gap in
Im Sbackward

r (v). Therefore the backward scattering contrib-
utes to the conductivity, where it dominates over the renor-
malized forward scattering. The nonvertex Kubo formula
gives here approximately the same dc conductivity like the
transport equations. At lower temperatures the distribution
functiondnF(\v)/dv overlaps only little with the structures
in Im Sbackward

r (v) and the nonvertex Kubo formula fails.
Below T'1 K the distribution function is fully localized
inside the gap in ImSbackward

r (v), so that the backward scat-
tering completely freezes out and the forward scattering
dominates in the conductivity.16

In Fig. 2 we present the homogeneous dc conductivity
s(k50,v50) in the temperature intervalT50.1210 K,
calculated from the transport equations~41! for the param-
eters from Table I. This figure clearly supports conclusions
from the previous paragraphs. At higher temperatures vertex
solution~full line! and nonvertex solution~dotted line! coin-
cide. At lower temperatures backward scattering freezes out
and belowT'1 K, where the forward scattering dominates,
the vertex solution is about two orders bigger than the non-
vertex solution. Here both solutions for the dc conductivity
give a low-temperature asymptotic behavior of the form
T23. The presence of the forward scattering at low tempera-
tures changes an exponential inT behavior of the conductiv-
ity exp(cT21), from freezing out backward scattering,23,24 to
a power law inT. The third power is probably a consequence
of a confined geometry, which breaks down the conservation

law of a momentum. Similar results can be found for the
homogeneous ac conductivitys(k50,vÞ0).

We can also briefly comment on the numerical solution of
the transport equations, solved here by iterations. The itera-
tions have started from the nonvertex solution and the vertex
corrections have been switched on very slowly, because the
convergence radius is closely approached during iterations.
We have multiplied the vertex part in~40! by a number,
which was varied in an intervalciter50.820.99 during the
iterations. It is also suitable to start the next solution from the
previous one and not from the new nonvertex solution.

2. Inhomogeneous conductivity

The inhomogeneous conductivitys(kÞ0,v) is more
complex. The real part of the conductivity Res(k,v) is a
symmetric function of the excitation wave vectork, which,
for a nonzero excitation frequencyv, is formed by two
peaks located at6kres. Their position is determined by the
Fermi velocityvF asv'vFukresu and their widthDk can be
approximately related with the dc transport time by
^tp&'2p/DkvF ~the width of the nonvertex solutionDnonk
fulfills the same relation for the timêts&'2p/DnonkvF). As
the frequency goes downv→0, the two peaks join each
other and the total weight below the curve Res(k,v) can
change in dependence on the type of a dominant scattering
process. If only the forward scattering is present in the sys-
tem, then the weight is preserved. If also the backward scat-
tering is present, then the weight goes down~till 0 for elas-
tically approximated backward scattering16!. Therefore at
high temperatures~backward scattering dominates! the
weight falls down greatly asv→0 and deeply below the
freezing temperature~forward scattering dominates! the
weight is preserved.

In Fig. 3 we present the behavior of thek–dependent
conductivity asv→0, calculated from the transport equa-
tions ~40!. The weight below the curve Res(k,v) is pre-
served for the low temperatureT51 K, while it goes down
for T52 K, where the backward scattering is present.

3. Conductance

These results are reflected in the ac conductanceG(v) @do
not confuseG(v) with usual symbols for an electron–
photon or electron–phonon vertex#. The conductance could
be defined18 by an absorbed powerP(v) of a locally excited
quantum wire in the electric fieldE(x,v)

G~v![
P~v!

f2~v!/2
, f~v!5E

irad. reg.
dx E~x,v!, ~42!

wheref(v) is the change of the electric potential in the
iradiated region. In ak representation the absorbed power
can be expressed by the conductivity and the acting field as

P~v!5
1

2E dk

2p
Res~k,v!uE~k,v!u2. ~43!

If the radiation falls only in a space interval of the wire with
a finite length

E~x!5E0@Q~x2L/2!2Q~x1L/2!#,

FIG. 2. The dc conductivity in the temperature interval
T50.1210 K for parameters in Table I. We relate the conductivity
to a reference values ref5(2e2/h) l ref , where the reference length is
l ref51 mm. At higher temperatures vertex~full line! and nonvertex
~dotted line! solutions coincide. In the intermediate temperatures
the backward scattering freezes out and the vertex conductivity rap-
idly grows. BelowT'1 K only the forward scattering contributes
and both solutions follow a third power lawT23.
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then the ac conductance can be expressed as

G~v!5E dk

2p
Res~k,v!S sin~kL/2!

kL/2 D 2. ~44!

The source with the lengthL has ak spectrum localized
around the origink50. Therefore the conductanceG(v) in
~44! becomes sensitive to the area below the curve
Res(k,v). For usual lengthsL ~in range of microns!, the
momentum width of the function„sin(kL/2)/(kL/2 )…2 is
larger than that of Res(k,v). Therefore the change of the
surface below the curve Res(k,v) asv→0 ~see Fig. 3! is
reflected in the conductance~44!.

In Fig. 4 the dc conductanceG~v! from ~44! is evaluated
for the solution of the transport equations~41! or equiva-
lently the Holstein equation~C3!. The excitation source of
the lengthL52mm is considered. We can see that the value
2e2/h, characteristic for a Fermi liquid,25 is practically
reached by both vertex and nonvertex solutions asT→0.
Nevertheless, recent theories and experiments support the
Luttinger liquid behavior, which cannot be described by the
Migdal self-energy. The onset of a backward scattering
aboveT'1 K is accompanied by a sharp falling down of the
vertex solution. This can be understood as a blocking of the
wire by consequent scattering of electrons in backward di-

rections. The magnitude of the changed conductance is rather
given by the degree of inelasticity of the backward scatter-
ing, than by the strength of this scattering. AtT'5 K the
nonvertex solution suddenly falls down, because 2p/Dnonk
approaches the excitation lengthL52 mm. In the vertex so-
lutions this falling is characterized by the length 2p/Dk.
Physically, this falling down corresponds to a transfer from
the ballistic in the Ohmic regime of the conductance.

We have also evaluated the ac conductance, in order to
see the influence of high-frequency electric fields on the
blocking. The results are presented in Fig. 5. BelowT'1 K
the backward scattering is frozen up and the conductance is a
flat function of v, starting from the asymptote
G(v50)'2e2/h in Fig. 4. AboveT'1 K this asymptote
falls down, since the backward scattering survives. This fall-
ing of G(v) is disturbed by the excitation field, if its fre-

FIG. 3. Thek-dependent ac conductivity for different excitation
frequenciesv and the temperatureT51,2 K, calculated from the
solution of transport equations. As this frequency grows a resonant
peak forms in Res(k,v) and moves to higher resonant wave vec-
torsk of the excitation field. As the frequency falls downv→0, the
surface below the curve Res(k,v) can be reduced. In the upper
drawing (T51 K! backward scattering is frozen up and the surface
is preserved, while on the lower drawing (T52 K! the backward
scattering is present and the surface is not conserved.

FIG. 4. The dc conductance for the vertex~full line! and non-
vertex solutions~dotted line! as a function of a temperature. As
T→0 both solutions approach the value 2e2/h. AboveT51 K the
vertex solution sharply goes to a smaller value, determined by the
inelasticity of the backward scattering, while the nonvertex solution
relaxes very slowly. For a finite lengthL52 mm a cut off is seen at
some temperature in both solutions. It results from a competition of
L with 2p/Dk(Dnonk), and corresponds to a transfer in the Ohmic
regime.

FIG. 5. The frequency-dependent ac conductanceG(v) for
T51,2 K. In the limitv→0 these curves approach the dc conduc-
tanceG(v50) from the previous figure. At low frequencies both
curves for the ac conductanceG(v) are flat. As the frequency
grows, blocking atT52 K becomes disturbed, so that both curves
saturate to the common plateau close to 2e2/h. The nonvertex so-
lution would be concave at all temperatures asv→0.
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quency followsv.vFDk/2p. Therefore atT52 K the ac
conductanceG(v) is a convex function of frequency as
v→0. The convexity ofG(v) has also been predicted in
capacitance effects, characteristic for resonant tunneling
devices.26 The nonvertex solution,17 which is a flat concave
function of frequency asv→0, is not presented here. At
higher frequencies interference dips17 from the finite length
of excitationL52 mm might appear in all solutions.

In experiments usually a short channel is connected to
broad contacts. Then a conductance defined from a transmis-
sivity of this short channel27 probably does not fall down as
much as in Fig. 4. This is because, in experiments, backward
scattering of electrons in the ballistic regime usually takes
part outside of the short channel. The scattered electrons do
not return back to this short channel, but spread out in the
contacts. As a result the Fermi level in the constriction is not
well stabilized against shift by the electric field, and blocking
is not possible. In more realistic calculations screening
should be also included. Our nonscreened results correspond
only to the drifted part of the total conductivity.28

IV. CONCLUSION

We have developed29 a linear response method for quan-
tum many-body systems by linearization of the nonequilib-
rium Green’s function equations1 in the integral form. The
linearized integral equations result in a simpler way than the
linearized differential equations,11 because some transforms
can be avoided. In the new method also the one- and two-
particle points of view are very closely interconnected.
Therefore the method is more direct than the Kubo formula,
where vertex equations of different analytical structures must
be solved in the first step.

As a demonstration example, we have calculated a linear
response of a quantum wire with an electron–phonon inter-
action to longitudinal electric fields.29 After application of
standard approximations from metals to the linearized equa-
tions, we have obtained the Holstein equation,12 being a
weak scattering limit of the Kubo formula in the present
problem. The Holstein equation has been solved, and from
its solutions the ac/dc conductivity have been calculated. We
have realized that for high temperaturesT@1 K the solution
of the nonvertex Kubo formula17 agrees with the Holstein
equation. At lower temperatures the scattering of electrons in
a backward direction freezes out and for temperaturesT,1
K the forward scattering completely dominates. Here both
the solution of the nonvertex Kubo formula and the Holstein
equation go likeT23, but the vertex solution of the Holstein
equation gives a much larger conductivity. Similar effects
have been found in the ac conductivity for homogeneous or
inhomogeneous probe electric fields.

These results have been applied to evaluation of the ac/dc
conductance, calculated from a locally absorbed power by
the system.18 The one channel dc conductance approaches its
ballistic value 2e2/h belowT'1 K. Above this temperature
the dc conductance sharply decreases, since the backward
scattering becomes active. This blocking of the transport by
the backward scattering is disturbed, if frequencies of the
excitation field are bigger than the backward scattering rate.

We believe that the new method, introduced and tested
here, can be applied in more complicated linear response

problems. The method could be systematically generalized to
probe stationary nonequilibrium31 or nonstationary systems.6

A nonlinear response of quantum systems could be defined
by higher-order functional derivatives over external fields.
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discussions of the formalism and many helpful comments.
The numerical part of this work has been done on CRAY
Y-MP EL at the Institute of Physics and on STARDENT in
ASCOC Laboratory, Prague.

APPENDIX A: SUMMARY OF GREEN’S FUNCTIONS

In this appendix we define Green’s functions for real
times ~analogously, the Matsubara Green’s functions can be
defined in complex times!. Some standard relationships be-
tween functions with different analytical structures are also
introduced.

The causal~time-ordered! fermion (O5c) or boson
(O5A) Green’s functions20 are defined by

Gt~1,2!52
i

\
^T@O~1!O†~2!#&, j[~r j ,t j ! ~ j51,2!.

~A1!

Correlation functions are related to the causal functions
by

i\Gt~1,2!5G.~1,2!5^O~1!O†~2!&, t1.t2 ,

7 i\Gt~1,2!5G,~1,2!5^O†~2!O~1!&, t1,t2 ,
~A2!

where the upper~lower! sign applies for fermions~bosons!.
The retarded and advanced Green’s functions are defined by

Gr~1,2!52
i

\
u~122!@G.~1,2!6G,~1,2!#,

Ga~1,2!5
i

\
u~221!@G.~1,2!6G,~1,2!#. ~A3!

In space homogeneous systems the Green’s functions de-
pend only on the differencer5r12r2 , so that in thek rep-
resentation they result as

Gt~k;t1 ,t2![E
2`

`

dnre2 i r•kGt~k;t1 ,t2!

52
i

\~2p!n
^T@O~k,t1!O

†~k,t2!#&. ~A4!

Here the operator is equal toO(k,t)5ak(t) or
O(k,t)5bq(t)1b2q

1 for fermions or bosons. In a thermody-
namic equilibrium they depend also on the difference
t5t12t2 , and after a Fourier transform over times the ferm-
ion and boson correlation functions read1
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G,~k,v!5nF,B~\v!AG~k,v!,
~A5!

G.~k,v!5~17nF,B~\v!!AG~k,v!,

wherenF ,nB denote the Fermi-Dirac and Bose-Einstein dis-
tributions

nF,B~\v!5
1

e\v/kT61

and the spectral function is defined by

AG~k,v![22 ImGr~k,v!5G.~k,v!6G,~k,v!.
~A6!

From Kramers-Kronig rules it follows that the retarded ferm-
ion or boson Green’s function can be calculated from its
spectral function~A6! by

Gr~k,v!5E
2`

` dv̄

2p

AG~k,v̄ !

v2v̄1 id
. ~A7!

Most of the above formulas hold not only for the Green’s
function but also for the self-energy. For example the spec-
tral function for the self-energy can be represented by corre-
lation functions for the self-energy as in~A5!. Then the re-
tarded self-energy can be found from its spectral function
by ~A7!.

The nonequilibrium Green’s functions are derived by ana-
lytical continuation of the Matsubara Green’s functions in
complex times.1 In NGF it is often necessary to find the
retarded or small part of a combination of functions in com-
plex times. An example is the product

A~1,2!52 iB~1,2!C~1,2!, ~A8!

whereA,B,C are one-particle causal Green’s functions or
self-energies and the numbers with bars mean that these pairs
of coordinates are integrated out. The required functions can
be found by analytical continuation along a complex curve5

and reduction to the real axis

A,~1,2!5B,~1,2!C,~1,2!,

Ar~1,2!5Br~1,2!C,~1,2!1B,~1,2!Ca~1,2!. ~A9!

Other structures can be handled similarly. The integral ver-
sion of the Dyson equation leads to the following equation
for the nonequilibrium correlation function~equation for
G. results by the exchange of signs, and. here!:

G,~1,2!5Gr~1,3̄!~G0
21!r~ 3̄,4̄!G0

,~ 4̄,5̄!

3~G0
21!a~ 5̄,6̄!Ga~ 6̄,2!

1Gr~1,3̄!S,~ 3̄,4̄!Ga~ 4̄,2!. ~A10!

The nonequilibrium propagatorsGr ,a can be found from
G,,. by ~A3!.

APPENDIX B: FULFILLMENT OF CONSERVATION LAWS

Here we present an analog ofgeneralized Ward identities9

for the linearized functionsdG,/dU, which can be applied
to prove conservation laws31 for these functions. The deriva-

tion is the same as for the linear response function
L(1,2;3,4), used in standard approaches.9,31

Consider that electric and magnetic fields acting on the
studied quantum system are zero. The scalar and vector po-
tentials, coupled by a gauge transform, can still be nonzero.
This equilibrium system can be described by differential
equations forG,,. in the presence of the potentials11

A~r ,t !5¹L~r ,t !, f~r ,t !52
1

c

]

]t
L~r ,t !, ~B1!

for any reasonable gauge functionL(r ,t).
The solution of these equations can be expressed as9

G,,.~1,2;L!5exp@2L~1!#G,,.~1,2;L50!exp@L~2!#,
~B2!

which can be checked by the substitution of~B2! into the
equations forG,,.. The same solution should result from
the integral form of these equations~A10!.

Variation ofG, in ~B2! over the gauge functionL gives
~analogical expression results forG.)

dG,~1,2;L!

dL~3!
U

L50

5~d~223!2d~123!!G,~1,2;L50!.

~B3!

From the other side, for an infinitesimal change of the gauge,
the change ofG, in the potentials~B1! is equal to

dG,~1,2;L!5E d3FdG,~1,2!

df~3! S 2
1

c

]

]t3
L~3! D

1
dG,~1,2!

dA~3!
•¹3L~3!G . ~B4!

After the per-parts integration in~B4!, the variation results as

dG,~1,2;L!

dL~3!
U

L50

5
1

c

]

]t3

dG,~1,2!

df~3!
2¹3•

dG,~1,2!

dA~3!
.

~B5!

The two variations~B3!, ~B5! must be equal. Therefore we
get the following analog ofgeneralized Ward identities:9

1

c

]

]t3

dG,~1,2!

df~3!
2¹3•

dG,~1,2!

dA~3!

5„d~223!2d~123!…G,~1,2!, L50, ~B6!

which can also be interpreted as a number~charge! conser-
vation law,31 obeyed by the linearized functionsdG,/dU.
Similarly, other laws can be derived.

APPENDIX C: COMPARISON WITH THE HOLSTEIN
EQUATION

In this appendix Eq.~41! is compared with the Holstein
equation,12 which results by application of the Kubo formula
to the electron–phonon interaction in metals. Holstein ap-
plies the Migdal approximation of the electron self-energy,
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but does not exclude its momentum dependence. His equa-
tions result from pole approximations in a vertex equation,
which can be then inverted to a transport-like form. This
equation can be identified with a linearized Boltzmann equa-
tion in the limit of small external frequencies.

In the Holstein work12 the momentumk is bound to the
pole energyek asS(k,(ek2m)/\). Then the transport equa-
tion can be written as follows:

i F\vkq2\v1S r S k, ek2m

\
1v D2SaS k, ek2m

\ D Gfk

5vk2 i(
ql

Fs~k,k2ql !fk2ql
, ~C1!

where the functionFs in ~61! results from the vertex equa-
tion. For our problemFs reads

Fs~k,k2ql !5(
qt

uVqu2S nF~ek2ql
2m!1nB~\vq!

ek2ek2ql
1\vq2 id

1
12nF~ek2ql

2m!1nB~\vq!

ek2ek2ql
2\vq2 id

2
nF~ek2ql

2m1\v!1nB~\vq!

ek2ek2ql
1\vq1 id

2
12nF~ek2ql

2m1\v!1nB~\vq!

ek2ek2ql
2\vq1 id D

5@nF~ek2ql
2m1\v!2nF~ek2ql

2m!#PE
2`

` d\v̄

2p

A~ql ,v̄ !

ek2ek2ql
2\v̄

1
i

2
AS ql , ek2ek2ql

\ D @212nB~ek2ek2ql
!2nF~ek2ql

2m!2nF~ek2ql
2m1\v!#. ~C2!

In the second expression some algebra has been used, which together with summation of the transversal momentumqt in the
product(qt

uV(q)u2d(•••) gives the effective spectral distribution~28!. Therefore the integration overv̄ in ~C2! should be

performed at the end. As a result the above formulas and the following equation~C3! look rather differently than in Ref. 12.
To explicitly compare the equations~C1! and~41!, we must perform in~C1! approximations analogical those done in~41!.

When the pole substitution\v̄1'ek12ek12ql
is performed in the exponent of the functionA from ~28!, then in this exponent

the momentumql appears in two places„(ek12ek12ql
)/\s…22ql

2 . This function is approximated by giving the momentum

ql at the end of this expression (ql
2) the valueql50 (ql52kF) for the forward~backward! scattering. The same substitutions

can be performed in the exponents of the expression~C2!.
After these approximations ofA, the expression~C2! can be substituted in the Holstein equation~C1!. We can also neglect

the small difference between ourS r
„(ek2m)/\… andS r

„k,(ek2m)/\… in ~C1!. Then the approximated equation results

i F6C0k22\v21S r S ek12m

\
1v2D 2SaS ek12m

\
D Gf6S ek12m

\
;k2 ,v2D

56vk1E dql
2p\

S 2
nF~ek12ql

2m!1nF~ek12ql
2m1\v2!

2
2nB~ek12ql

2ek1! D
3FF f S ek12ek12ql

\
Df6S ek12ql

2m

\
;k2 ,v2D 1FbS ek12ek12ql

\
Df7S ek12ql

2m

\
;k2 ,v2D G

2 i E dql
2p

@nF~ek12ql
2m1\v2!2nF~ek12ql

2m!#E dv̄

2p

1

ek12ek12ql
2\v̄

3FF f~v̄ !f6S ek12ql
2m

\
;k2 ,v2D 1Fb~v̄ !f7S ek12ql

2m

\
;k2 ,v2D G . ~C3!
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The relation between the distribution function in Ref. 12 and
here isf6k[f6„(ek2m)/\…, wherefk resp.f2k corre-
spond tok.0 resp.k,0.

The conductivity can be found as in Ref. 12

s~q,v!52e2E
6k

dk

2p
v6kf6S ek2m

\
;q,v D

3
nF~e6k2m!2nF~e6k2m1\v!

v
. ~C4!

The linearization of the electron dispersion law from Table II
must be also performed in~C3! and ~C4!.

In order to show that Eq.~C3! is identical to the linearized
transport equation~41!, it is necessary to compare all terms
from these equations. The following identification can be
found either from~41!, ~C3! or from the conductivity formu-
las ~37!, ~C4!:

C0

dG,

dA6
S ek12m

\
;k2 ,v2D 5 if6S ek12m

\
;k2 ,v2D

3@nF~ek12m1\v2!

2nF~ek12m!#. ~C5!

If this substitution~C5! is performed in~41!, and Eq.~C3! is
multiplied by i @nF(ek12m1\v2)2nF(ek12m)#, then both
these equations can be directly compared. Since the left sides
are evidently the same, we have to compare the right sides.

Let us compare first the leading~first! terms of the right-
hand sides in these equations. If the seemingly different sta-
tistical factors are equivalent, then these terms are identical.
These statistical factors in the first terms of the right-hand
sides of~41! and ~C3! look as follows:

S nF~ek12m1\v2!1nF~ek12m!

2
1nB~ek12ek12ql

! D
3„nF~ek12ql

2m1\v2!2nF~ek12ql
2m!…,

2S nF~ek12ql
2m1\v2!1nF~ek12ql

2m!

2

1nB~ek12ql
2ek1! D „nF~ek12m1\v2!2nF~ek12m!….

~C6!

The equivalency of these factors can be proven in several
steps. The expressions in~C6! can be multiplied by all dif-
ferent denominators with exponentials from the distributions
nF ,nB . Then all terms with different powers of
exp„b(ek12ek12ql

)/\… can be compared. After some algebra
the equivalency of factors in~C6! results.

The last ~renormalization! terms in Eqs.~41! and ~C3!
have to be compared in a different way, because the distri-
bution functions have different arguments. After a detailed
analysis, where the same integration variables are chosen, the
two terms result as equivalent, too.

APPENDIX D: EVALUATION OF RELAXATION TIMES

In practice therelaxation time approximationof the Bolt-
zmann equation is broadly employed.20,32,33In this Appendix
we would like to mention this approximation in the context
of linear response methods.

The relaxation time approximation can be introduced in
the Boltzmann equation as follows:20

] f ~k!

]t
1v•¹ f ~k!1

]k

]t
•¹kf ~k!5S ] f ~k!

]t D
collis.

'2
f ~k!2 f 0~k!

tp~k!
.

~D1!

In systems which are close to equilibrium the timetp(k) can
be identified with the~equilibrium! transport time or equiva-
lently the momentum relaxation time.33 Then the two right
sides in~D1!, i.e., the exact scattering integral and the relax-
ation time approximation withtp(k), give in most situations
equivalent descriptions of the Boltzmann equation. Therefore
close to equilibrium the timetp(k) can be directly evaluated
from the equation~D1!, as described below.

In systems with an isotropic dispersion law for electrons
the electron momenta change in a static homogeneous elec-
tric field as]\k/]t52eE. Therefore the solution of~D1! is
of the form

f ~k![ f 0~k!1
e

\
tp~k!E•¹kf ~k!

' f 0~k!1
e

\
tp~k!E•¹kf 0~k!. ~D2!

The second expression in~D2! is anAnsatzfor the distribu-
tion function f (k), which assumes that the electric fieldE is
weak.20,32 If this Ansatzfunction f (k) is substituted into the
exact scattering integral„] f (k)/]t…collis. in ~D1!, then the
time tp(k) can be evaluated from~D1!. Holstein has applied
this approach when compared his formulas12 with the linear-
ized Boltzman equation. There the functionfk is considered
instead oftp(k).

The transport timetp(k) is different from the time be-
tween scattering eventsts(k), which is an inverse imaginary
part of a self-energy in a pole approximation, multiplied by
two. An expression forts(k) can also results from Eq.~D1!,
if outcomingterms are preserved there, butincoming terms
are neglected in the scattering integral32 (' the nonvertex
Kubo formula!. For elastic scattering the two times differ by
an important factor 12cosu8512k•k8/k2, averaged over
the outcoming momentak8 with the square of the matrix
element.20 This difference expresses the fact that vertex cor-
rections for a conductivity are included in evaluation of
tp(k) but not ints(k).

The linearizedAnsatz~D2! can also be directly used for
evaluation of an induced current in the weak field20 E
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J52en052en0E d3k

~2p!3
f ~k!

\k

m

52e2n0E d3k

~2p!3
tp~k!vk~E•vk!

d f0~k!

dek
.

~D3!

From ~D3! a homogeneous dc conductivity in the relaxation
time approximation can be defined20

s52
e2n0
3 E d3k

~2p!3
vk
2tp~k!

d f0~k!

dek
. ~D4!

In a free electron metal at zero temperature only the elec-
trons on the Fermi surface contribute to the transport. Then
the dc conductivity~D4! gets a simple form20

s5
e2n0tp~kF!

m
. ~D5!

At nonzero temperaturestp(k) is averaged by the distribu-
tion functiond f0(k)/dek in ~D4!, so that the timetp(kF) in
~D5! should be substituted by theaverage transport time
^tp&. Only at very high temperatures might the averaging
again become trivial. Theretp(k) is usually weaklyk depen-
dent and it can be taken out of the integral~D4!. At high
temperatures also the vertices could be less important, since
scattering into all angles should become possible for ener-
getical reasons. Therefore the substitution oftp(k) by
ts(k) might be reasonable.

From the similarity of the formula~D4! with ~37!, it fol-
lows that an effective transport timetp(k) can be defined
directly from the Holstein equation~C3! or from our trans-
port equations~41! @see~C5!#. In homogeneous dc electric
fields this timetp(k) results

tp~k![2
\fk

vk
5
i\C0

vk
lim
v→0

F 1

nF~ek2m1\v!2nF~ek2m!

3
dG,

dA1
S ek2m

\
;0,v D G . ~D6!

If the nonvertex solution is used in the expressions~D6!,
then the relaxation time between scattering eventsts(k) re-
sults instead oftp(k).

We can briefly discuss also the homogeneous ac conduc-
tivity, which is often described by a Drude formula. This
formula applies the relaxation time approximation in ac
fields as follows:

s'2
e2n0
3 E d3k

~2p!3
vk
2 tp~k!

12 ivtp~k!

d f0~ek!

dek

'
n0e

2

m

^tp&
12 iv^tp&

. ~D7!

The first expression in~D7! can be obtained from the Bolt-
zmann equation~D1! in the same way as~D4!. The acAnsatz
differs from ~D2! by the multiplicative factor
1/@12 ivtp(k)# in the right side of~D2!. In a more exact
approach the second expression in~D7! should be written as
^tp(k)/@12 ivtp(k)] &.

Numerical results for the ac conductivity seem to fulfill
the Drude formula~D7! for some timetp(k). Therefore we
could try to define the new ac relaxation time from~D7!
similarly as in~D6! ~the condition is\v!kT)

tp~k!

12 ivtp~k!
[2

\fk

vk

5
i\C0

vk
F 1

nF~ek2m1\v!2nF~ek2m!

3
dG,

dA1
S ek2m

\
;0,v D G . ~D8!

Here the solutions of transport equations in homogeneous ac
electric fields should be substituted. The relaxation time
could depend also on the external frequencytp(k,v).

20 The
definition~D8! is not applicable, whentp(k,v) appears to be
complex ~or the imaginary part is relatively big!. Then the
Drude-like formula is not valid.
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