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Linearized quantum transport equations: ac conductance of a quantum wire
with an electron-phonon interaction
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A linear response formalism is developed for evaluation of transport coefficients in quantum many-particle
systems. The method is based on a systematic linearization of nonequilibrium Kadanoff-Baym transport equa-
tions in anintegral form in ac electric fields. Simple and consistent approximations can be performed in the
resulting set of transport equations, which replace vertex equations in the Kubo formalism. The method is
illustrated by the example of an ac and dc conductivity and conductance for a quasi-one-dimensional electron
system with an electron—phonon interaction for three-dimensional acoustical phonons. After approximations
standard in metals, the solved transport equations coincide with the Holstein equation.

I. INTRODUCTION produced correctly the Holstein equattérior the electron-
phonon scattering in the Migdal approximation. Chen and

Transport phenomena in quantum many-particle system$u'® have tried to augment this method to achieve a proper
in particular with a restricted geometry, cannot be fully un-bookkeeping of the many terms appearing as a result of the
derstood without quantum transport theory, which would beapproximate linearization of thdifferential form. This ex-
simple and reliable, but at the same time powerful enough téension is unavoidable for more complicated types of scatter-
avoid inappropriate approximations. The nonequilibriuming. Another generalization of the methdds to the case of
Green’s functions formalistNGF) of Kadanoff and Bayrh  the ac electric fields, by Wu and Mah&hThe last method
and Keldysfh can faithfully describe quantum systems in does not explicitly coincide with the wotkin the dc limit
nonequilibrium?® Unfortunately, the complex structure of the w— 0, but the Holstein equatiof(the Boltzmann limit has
theory involving double time structure was slowing down anbeen acquired too. A gauge invariant form of thdgféeren-
application of NGF. Therefore, much effort has been devotedial equations has been recently presented by Levanda and
to reduce NGF in strongly nonequilibrium systems to aFleurov!® where the ac equations coincide in the limit
single time transport theofy. w—0 with the dc equations.

Very successful are applications of the NGF to a deriva- In this work we linearize quantum transport equations in
tion of linear response formalisms of a general validity,the integral form.® This way is probably more flexible than
where usually the double time structure can be avoided. Ithe differential methods:'® because some intermediate
NGF the Dyson equation in complex times and in the pressteps can be avoided and the resulting system of equations
ence of external fields is analytically continued to realappears simpler. Thategral approach is also inherent to the
times? This gives a set of transport equations for nonequi-Kubo formula, but in our method one and two-particle points
librium correlation functions in either differentiall or an  of view are more clearly interconnected. This opens a possi-
integral form 8 Linearization of these transport equations inbility to easily perform consistent approximations. When
terms of the external fields produces new equations, frontesting equilibrium systems, the new method seems to agree
which the linear response coefficients can be found. with the Kubo formula for minimal vertex correctioRslhe

In equilibrium systems these theories can be comparedpproach can be applied in stationary nonequilibrium condi-
with the complementary approach of the Kubo formula, tions, and its possible extension to transient nonequilibrium
which expresses the linear response in terms of a special tydtuations is ensured by its NGF origin.
of a two-particle Green’s function. One way of its actual We apply the new method to evaluate ac and dc conduc-
determination is to linearize the one-particle Matsubardivity and conductance for a quasi-one-dimensiofihD)
Green’s functior§ with respect to the external fields. This electron system, embedded in a three-dimensiqi3al)
gives a Bethe-Salpeter equatidor the two-particle Green’s semiconductor and interacting with bulk acoustical
function of complex times. Its solution can be, after an anaphonons’’ After standard approximations for metals, the
lytic continuation to real times, identified with the Kubo for- method gives the Holstein equatfdrior this model. Its nu-
mula with minimal vertex correctiors. merical solutions show that beloW~1 K scattering of elec-

Several works followed the way of linearized NGF with trons in a backward direction freezes out and the homoge-
the goal of developing a simple consistent scheme of incorneous dc conductivity, given solely by scattering in a
porating approximations for carrier scattering. Linearizedforward direction, goes likd 3. Similar phenomena appear
Kadanoff-Baym transport equations irdéferentialform for ~ also in the homogeneous or inhomogeneous ac conductivity.
dc electric fields have been used by Prange and Kad4noffFrom the conductivity we evaluate an ac/dc conductance,
for an electron-phonon interaction. “Rsch and Mahdd  defined by an absorbed power in a locally excited part of the
have elaborated and applied this approach. Their results revire.!® The one-channel dc conductance acquires the stan-
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dard value 2°/h asT—0 K. Above T~1 K this conduc- e
tance sharply falls down, due to the presence of the back- U(1,2)= 6(t1—t2)<e¢(1)— aimAL)- (Ve =V
ward scattering. Here the ac conductance grows as a function
of a frequency until the backward scattering becomes dis- e? )
turbed. +tomah (1)>,

The paper is organized as follows. In Sec. Il we develop
the new linear response method from the quantum transpowthere the number§=1,2 represent a pair of coordinates
equations in the integral form. We linearize these equationgr;,t;). The fields(2) are characterized by the operator func-
and explain how transport coefficients can be evaluated frortion U(1,2), which is implicitly present also in the self-
the linearized transport equations in a frequency-momenturenergy .(1,2) (some GF relationships are summarized in
representation. In Sec. IV we apply the new method to evaluAppendix A).
ation of an ac/dc conductivity and conductance for a
qguasi-1D electron system with an electron-phonon interac-
tion. In this section some numerical results are presented, . o )
which might be of importance for mesoscopics. In Appendix Linear response coefficients can be precisely cal_culated
B we show how conservation laws result for the linearizedfom the Bethe-Salpeter equatfofikubo formula or thedif-
functions in the new method. The equivalence of the newferential form of the Kadanoff-Baym equatiorisOur start-
linearized transport equations with the Holstein equation igNg Point in the linearization scheme is th@egral version
also presented there for our model. Finally relaxation time®f the Kadanoff-Baym transport equatios10). _
are evaluated from the solutions of the linearized transport 1he NGF origin of these equations allows their applica-

A. Formulation of the equations

equations. tion to strongly nonequilibrium systems. Here for simplicity
we consider that the studied system is in stationary nonequi-
Il. LINEARIZED KADANOFF-BAYM EQUATIONS librium conditions, maintained by the external fields and by a

contact with reservoir. Then initial condition contained in the

function G dies out and the nonequilibrium transport equa-
Consider an interacting electron system excited by anions (A10) become simplified as follows:

electromagnetic field. This system can be described by the

Hamiltonian G<(1,2=G'(1,335(3,4)G%(4,2). 5)

IN THE INTEGRAL FORM

H=H+Hegy, The equation foG~ results by the exchange &f by 3~ in

(5), so that only the equation fo&~ (8G</5U) will be

B 3 ef i written as a representative of the pair of equationsGor,
Hext_ef d°r ‘P(r-t)P(r)_Ef d°r A(r,t)-j(r) G~ (8G</8U,56G>/5U). The nonequilibrium propagators

G"?(1,2) can be found fronG=""(1,2 by (A3).
e 3 A2 In this work we consider that the weak probe fie(@s
2mczf d*r A%(r,t)p(r), (1) test anequilibrium system. Term by term variation db)
over these fieldg or A gives a new set of equations

J’_

where Hg is the Hamiltonian for the free system akht],,
represents coupling to the fields, described by the scaIa,gG<(1'1r)
¢(r,t) or the vector potentiaA(r,t). In the following we —F 55—

will assume that the fields are weak, so that without loss of U(2)
generality the potentials can be used in the forms =py[G"(1,2G~(2',1")+G~(1,2G*2',1 )],/ >
r,t — e—i(wt—k~r)+($‘t’ _5Er 3’—4 o
#(r.t=eo +G'(1,3)ﬁ6<(4,1’)
e iwt—k-n+at (2)
A(rt)=Ejc———— (6—0). (2 _55%34)
lw +G<(1,3)—5U((2’) ) G%(4,1')
The densityp(r) and the current density operatg(s) are’ o
. 50 BY
p(r)=¢ (r)(r), +G (1’3)T(2)G (41). (6)
fi : oAt r(a) i
N _ + In (6) the functional derivative o5"'® was substituted by
iO)= gm0 OVUO (Ve Ol @ o e
For our purposes it is appropriate to describe the system 8G(1,1) .
by Green’s functions, time ordered along a curve in the com- T50(2) pulG'(1,2G"(2",1") ]2/ =2

plex plané (generalization of the Matsubara G he elec-
tron Green’s function follows a Dyson equation in the inte-

5334
gral or differential form. Its inverted solution looks like +G'(1,3

T(Z)Grm,l'), (7)

G Y4(1,2=G5%(1,2-U(1,2-3(1,2, (4)  where the formulas
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r ry—1 r r r

5G'(1,3) E_Gr(l,S)a(G ) (5,6)Gr(6,3) ® 53" (13 _ S5[e(13 N 52c(1,3),

sU(2,4) sU(2,4) SU(2) SU(2) sU(2)
and (4) were used. The operator i9,=1, (A/2im) (12
X(V,—V,) for U=ee, —(e/c)A, and the nonlinear term S35(13 62:(L3
in AZ is neglected due to weakness of the probe fields. The 5U(2) - 5U(2)
single particle functionsG="=""2 in (6), (7) are taken in
equilibrium.

The linearized propagator8G'?/5U could also be ex- The Hartree-Fock self-energy, which is a mean field ap-
proximation local in time of the electron-electron interac-

pressed from the linearized correlation functionstions has the retarded part equal to
8G=~/5U in an equivalency analogical to that between the ’ P q
propagatorsG"? and the correlation function&=~'~ (see

Appendix A H(1,3)= 8(t,—t5) 8(ry —1g) f T v(r, -1
5G(1,1) 5G7(1,1) 8G<(1,1)
5U(2) 5U(2) U2

XG=(r,ty;r,ty) +8(ty—tg)v(ry—ry)

C) XG(ry,ty:rg,ty). (13

If the expressions for the linearized correlation functions ] )
from (6) and its counterpar6G~/8U are inserted intd9), This propagator self-energy can be linearized as follows:

then, after some algebra with theta functions, the right side

i
=-+0(1-1)

of (7) results. Thereforé€7) and (9) are equivalent to each 53 1e(1,3) — o
other and are consistent with the transport equatiéhs 02 5(t1—t3)5(f1—f3)j d°r v(ry—r)
From the identity(9) an important relation between the
linearized functions results. If we take into account that 8G=(r,ty;r,ty)
G'(1%,1)=1, then it follows that XT(Z)+ S(ty—tz)u(ry—rs)
r + H < .
6G'(17,1) :_I_®(1+_1) oA(1,1) o, Xae (ry,ty;ra,ty) 14
oU(2) h oU(2) S5U(2)
(10

> <
6G7(1Y __sG7(LD The collisional contributions fulfill the same relationships

su(2) 6u(2) - as the related self-energy parts, nam@) and (A7)
In other words as 1— 1 the two linearized correlation func-
tions degenerate into one. The linear response coefficients §37(1,3) i 53.(1,3 825(1,3
can be found from the functioG=(1,1)/6U(2). To obtain EOE R O(ti—ty) 5U(2) + 5U(2)
this function of one argument (12) (for a stationary and (15)

homogeneous systgm the more general function
6G=<(1,3)/6U(2) with two arguments (% 3),(1—2) must
be found. Therefore the equivalen¢¥0) usually does not
reduce the number of solved equations, but in some syste
it gives a hint to a possible simplification.

The coupled system of transport equatidé$ and its
counterpart forsG~/5U will be closed, if all functions are
expressed byG=<"~/5U. This can be achieved in two steps.
First the functionss2"2/6U should be represented by
62 =7/58U in a relation analogous t@\6) and(A7), holding
betweenX"? and X <~. Second the function$><"~/5U
must be expressed 3G =~/8U in the same way as relate
3=~ andG*='~ for a given many-body approximation.

Let us see these relationships in more details. Generall
the electron self-energy is a sum of thmgular (Hartree-
Fock or mean fieldpart 2= and theregular or collisional
part 3. Both parts contribute to the self-energy propaga- B. Frequency representation
tors, but only theegular part has nonzero contribution to the
correlation function of the self-energy

Generation of linear response functions by a functional

rivative is known to lead in a safe way to many-body
conserving approximations (conservation laws are
fulfilled®). To ensure this mandatory consistency of the trans-
port equations in the presence of approximations, the same
approximative steps must be performed ¥i~~ and
82 <718U. This holds not only for the approximations,
which result by selecting an appropriate class of Feynman
diagrams in the self-enerdy,but also for auxiliary physi-
cally motivated approximations. This makes it possible to
keep under control a self-consistent structure of the one- and
two-particle levels of the solution. Some of these approxima-
tions are presented in the next section.

Weak probe fields can be resolved into Fourier compo-
nents (2), which can be considered to act on the studied

r 5 LS < _y< _ system independently. A linear response to comp(_)sne weak
F(1I=24(19+2e(19, 27(LI=2c (19 fields can be calculated from a linear superposition of re-

(11) . , .

sponses to Fourier components of these fields. Since the

The linearized self-energy function fulfills the same relation-weakly excited system remains space and time translation-
ships ally invariant, it is enough to know any linearized function
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SF(1,3)/6U(2), from the transport equatior{§), for the differences of arguments {13), (1—2). Our results can be more
simply compared with the work of Holsteff,if we define the Fourier transform in a little unsymmetric way

oF(1,3 _f doy dwzf dklf dkp 6F ok
oU(2) 27 ). 2 50 (@1 kiiw2.k2)
i H . . r1+r3
Xexpgimi(ty—t3) tiws(ty—ty)—iky-(ry—r3)—iks- = |- 16

Internal arguments of the functione{,k;) are analogical as i®(k,w). External argumentsaf,,k,) are identical with those
in the fields(2).
Application of the transforn{16) to Egs.(6) gives

5G< ; k2 (52!‘ . k2
SU (klawl;kz,wz)ZG k1+?,w1+w2 pu+m(kl!wl;k21w2) G kl_?'wl
_ ko % . K,
+G k1+?’wl+w2 pU+W(klvw1;k2,w2) G kl_?!wl
r k2 = a k2
+G"| ki + ?,wl+w2 W(kliwl;kZ!wZ)G kl—?,wl , (17)

where the functional derivative @" was substituted by

J(r,t)=e<j(r,t)— %A(r,t)p(r)>

5G'

=Jeon(r,t) + Jgian(F 1)
m(kluwlikz,wg)zGr cor ia

k
K+ —=,

w1t w
2 @1 2

fds_dt a(r—rt—t)-E(rt), (20)

5 r
X| Pyt W(kl,wlikz.wz))
where the definitiong3) have been applied. Averaging of the

&' ki — ﬁ ® ) (19) current density operatgr gives the correlation currerdt,,
1o and averaging of the product of the vector potenfialith
the density operatop gives the diamagnetic curredty,m,.
The correlation current can be expressed in a frequency-
and the momentum ipy=1, Ak, /m for U=eqp,— (e/c)A. momentum representation as follows:
Later we will also use the relationshifp5) in a frequency
representation —
Bk 4k [ dw o<
Jeorl K, 0) =€ (2 ) mJ G=(k, _j
83, 1 do
0= 57| s UK (601 o
(2m3 m o
S 835
X (w;w,) + SU (0;0))
6G< —
(19 +—e(k,a);k,w)
N

Here we have written only the frequency variables.

X —SA(k,w) + (22)

C. Transport coefficients

Transport coefficients can be easily calculated from the
solution of the transport equatiot7). For example the to- Combination of the formulag0) and(21) together with the
tal current density induced by weak probe fields results byelation between frequency components of the electric field
averaging of the velocity of electrons over the perturbed statand vector potentiaE= (i w/c)A gives the components of
of the systerff the tensor for ac conductivity
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i [nye? 2Pt o2
Taplkw)= 5( 21 Ot o plk ""))v F(qQ:ex;{ — M ,
2ie [ dk fik , ( 1 )1/2
r _=- a M(q)=—-V |
Ha’[;(k,w) ® (277)3 m (Q) 0|q| 2Pcrys§|Q|
do-  6G=< o where the ground state of the well is characterized by the
XJ——(k,w_;k,w). (22 wave function
2m 8| — EA
¢’ 1 x2+y?
, _ . o Pp(X,y)= exp 5 2| (24)
Here ny is the concentration of carriers and the multiplica- 00\/; 90

tion by 2 resul_ts from the sur_nmation over spin components;, (23) s is the velocity of soundgy is the diameter of the
In many situations only the diagonal elements of the CO”dUCWire, Peystis the density of matter, and is the strength of

tivity tensor are nonzero. the electron-phonon interactidAThe operatom, creates an

olg rr}cz);hb?lritphof:alugr&ﬂ?:%g?(igéz ogegt éﬁﬂtu gzg Eethe electron with a 1D wave vectdrin the transversal stat@4)
P y q y Y Sy and the operato!nq+ creates an acoustical phonon with a 3D

calculated from the transport equatiofls) as the linear re- 2 o o .

sponse to the scalar potentigl The polarizability differs wave vectth=(q>.<,qy,qzl=|), G = 0x+dy - In this work the

from the correlation part i22) by deletion of the momen- eIect.ron_—phonon interaction i(23) as well as the probing

tum prefactor and the substituton 0BG</SA by longitudinal field from(2) are not screened.

8G=</8¢. In the Appendix B we show how conservation _ _

laws are fulfilled by the linear response functiof@ </SA A. One-particle properties

and 6G~/5¢. Electrons and phonons in this system can be described by
The question remains whether the resulting linear reqD-electron and 3D-phonon Green’s functigisee the Ap-

sponse coefficients are equivalent to those found by th@endix A). The influence of the quasi-1D electrons on the 3D

Kubo formula. To answer this question in full generality phonons is probably small, so that the renormalization of

would be quite hard, because different analytical structurephonons is neglected:*? In experiments the Fermi level is

in both methods lead to different diagrammatic expansionsusually high enough, which means that the electrons on this

Therefore more work is necessary in this direction in thelevel are much faster than sound. Therefore the Migdal ap-

future. proximation of the electron self-energy should be vtids-

sible breakdown is mentioned later

[ll. ELECTRON-PHONON INTERACTION IN QUASI-1D

In order to see how the linearized transport equatiags > (Kt.t")=—i qEq (F(a)M(@))*G(k—q;;t,t")D(as;t,t').

can be applied, we find an ac/dc conductivity and conduc- e 2
; (25

tance for a quasi-1D electron system. The model has been . o )
introduced and studied in Ref. 17, where one-particle proplts correlation functior® = can be written as
erties and the nonvertex conductivity and conductance have 1
been investigated. Later a multiband extension of the model S <(k,0)= 4] do dg, dzq_t(F(q_t)M(ﬂ)z
was also presenté&d.In our work we evaluate vertex correc- (2m)
tions to the conductivity from Ref. 17 by the new linear — —
response method. y g XG=(k=q,,0-w)D(q 0]

The system is a single-quantum-well wire formed in a » do (= dq, o
bulk semiconductor. The wire is extended in thdirection =f ﬂf ZA(k—q 1,0~ )
and confined by a rotationally symmetric parabolic potential o o
in thex,y directions. The longitudinal motion along the wire X Aq 1, 0)ng(hwo—fho)ng(fiw), (26)
can be described by plane waves with wave vectors from a )
1D band with a parabolic dispersion relation. The transvers¥here we have used the expressigA$) and (A9). The
motion of electrons is quantized into harmonic oscillatorfunction .Z(q;,w) can be found from thes-like spectral
states. The electrons in this quasi-1D system are coupled #§nction for 3D free phonons
longitudinal 3D acoustic phonor8. B

Here we discuss for simplicity only transport in the lowest ~ A0(0:@) =27 d(ho—hwg) = d(ho+hog)]
state of the well. This one-band model can be described by
the modified Ffblich Hamiltoniart®1®

_277—w5(| - (2)2_ 2)
Tt lalsrqr | Vs

72K
H=>, ——a/ a,+>, #s|qlb;b )2
v 2m A At 2 fisldlbe by S| —ar|- (27)

X0

+> ay ax-q > F(aM(a)(bgt+b’y), (23 In the second expression @@7) the amplitude of the trans-
k.ay "af d versal momentuniqg,| has been chosen as a new variable.
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TABLE |. Parameters of the model. . . .
Scattering of electrons in quasi-1D at T=1K

effective electron mass m =0.0165 m,
density (bulk GaA9 Peryst =4560 kg/n? 5 20 _.20
velocity of a sound s =5220 m/s E E
interaction constant Vo=7 eV g 10 n| ‘s 10 n‘
diameter of the wire oo =7 Nm 3 |'|l 4 ;"l
Fermi energy Er =20 meV W I N '\
i AN Vi g N/
s 0 5 "ns 0 5
ho [meV] ho [meV]
Substituting the functiop(k,w) from (27) into (26) and
performing the integration ovey;, the function. Z(q,,w)
results as follows: " backward forward
 EE— L@ a0

5

/Z(Q| ,w)=Ci|w|w eX[{ -5

2[5 -]

)2 FIG. 1. Schematic draft of the electron scattering on acoustical
2
—q } .

X0

(29 phonons in the quasi-1D system. In the insets we can see contribu-
S

tions to the imaginary part of the self-energy Bh, as a function of

energy, from scattering in the forward and backward directions. A
The correlations function® <, 3~ differ only by statistical  linearized electron dispersion law has been used and the tempera-
factors and the retarded self-enery can be calculated tureisT=1 K.AsT—0 K the Luttinger theorem is fulfilled, so that
from them as in the Appendix A. Im 3"(Eg)—0. The dashed line represents a derivative of a Fermi-
We have numerically tested the non-self-consistent forndPirac distribution at the same temperature.

of the Migdal self-energy, called the first-order Tamm-
Dankoff (TD1) approximation, which results frorf26) by o3 [w]?
application of free Green’s functions. These tests, with pa- Fp(0)=Ci|ofw EXP[ % (3 _(ZkF)ZH
rameters in Table I, show that the magnitude ofdmis
about 102 meV, but the structure in IR has the width of w2 )
the order of meV. Therefore the self-consistent electron spec- X0 g) —(2kg) }
tral function should be sharply localized aroud, so the
renormalization constant is very close to oAg=~0.99, and Here the function¥(w) andF(w) are effective scattering
the Migdal self-energy could be apparently substituted by théactors in the forward and backward directions. The above
TD1 self-energy. The tests also show that the TD1 selfsubstitutionspreserveinelastic character of the scattering in
energy(26) depends very weakly on the wave veckprbe-  this model. They are analogous to the momentum-indepedent
cause the momentum dependence for the effective phonaapproximation of a self-enerd$,called also the first quasi-
spectral function-Z is much weaker than that for the spectral classical approximation.
function for electronsA due to the smalb/v ¢ ratio. There- In Fig. 1 we demonstrate scattering of electrons in the
fore the TD1 self-energy can be further approximated byforward and backward directions. Contributions from these
keeping constant the integration variallg in .2 during the two scattering channels to the self-energy(29) are pre-
g, integration. Since the electron dispersion law in 1D hasented in the upper insets for parameters in Table I. In the
two branchesaroundk~ *kg), the q | integration can be forward scattering phonons of very low momentg~0 (and
divided into two parts. They naturally separate the scatteringnly thes¢ can be excited. Therefore it is IByyad @)
in the forward and backward directions, for which the con-#0 even very closely to the Fermi energsee the right
stants in.Z can be chosen ag ;=0 andq ;=2kg. By this inse). In a strictly 1D system one-phonon scattering of elec-
approximation thek variable can be integrated out from the trons in the forward direction is completely forbidden by
electron spectral functio(k—q |,o—w) in (26), so the conservation conditions, so that the forward scattering can
correlation function®, = become independent reappear only in higher orders of a perturbation thédin

the studied quasi-1D model, momentum conservation rules
are broker{see(28)], so that a weakly inelastic one-phonon

S <(w)= JOC d_“’_ O(fiw—tfiotu) forward scattering is present. In the elastic approximation the
_2T 52 . forward scattering falls out completed§.
oy (ho—hotu) In the backward part IN&{,.arq@ 92P is present around

the Fermi level, where IR}, ward0 at low temperatures.
The gap has a half-widthsk- (see the left inset given by
(29 scattering on phonons with momenja~ 2kg . The distribu-
tion functiondng (% w)/dw, from a conductivity formula, is
localized aroundEg and has the half-widthh w~kgT.
Therefore at low temperatures this distribution practically
does not overlap with the backward self-energy contribution

X[Fi(@)+Fy(@) INe(ho—fio)ng(fi@),

(TS w 2
Ff(mECﬂwweX _? g
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IM 3} cware SO that the backward scattering freezes out be- Let us see this directly. If the above derived
low the temperaturd = 2sk: /kgo (~14 K herg. At lower k1—|nerenQent linearized self—.energy functl_ons(:ﬂi) are
temperatures, tails of the distributiotin:(%w)/dw have substituted in(17), then on the right side of this equation the
only exponentially small overlap with the backward part of variablek; appears only in the pairs of Green’s functions.
Im3" and the forward scattering must domindteere at Therefore, when thé ; integration from(32) is applied to
T~1 K). (17), these pairs of Green’s functions can be integrated sepa-
rately from other terms. These integrals of bilinear combina-
tions of propagators and correlation functions are performed
below.

We can find the linearized transport equati¢h?) for the To simplify integrations of these functions, the dispersion
present model, probed by the weak longitudinal electric fieldaw for electronsE,, can be linearized in the neighborhood of

A(r,t)=Eqc[e” kD" Yiw] (k is parallel toA and to  the Fermi wave vectors as follovi&:
the wirg. This vector potentialA(r,t) can represent one

B. Two-particle properties

Fourier component of the longitudinal electric field, which A2 (k¥ k) = ke]? _
appears below a slit irradiated by a laser béam. Be=—5, —  ~#EColkk),
To keep the approach self-consistent, the Migdal approxi- ) (33)
mation of the self-energ§26) must be applied also in linear- C0=ﬁ G hor
m

ized self-energy functions from Egdl7). In this many-body
approximation the functions></SA looks like [we use a

simplified notation— (e/c)A—A] The same approximation has been done in the self-energy

(29) from Fig. 1. In fact at the Fermi level, where transport is

53 < important, this approximation changes the self-energy very
ﬁ(kl,wl;kz,wz) little. The approximate propagator results
do [ dq, 6G= _ _ Gl(k,w)= ! ; ~Ii_i,
Zf ﬂj 57 oA (Kima1, 01~ kg, wp) - ho-Etp—2(0)  Cok¥a
— ho—pu+pu—3"
X///(q | ,mnB(ﬁm- (30) aEk,:+ e s CM > (w)v (34)
0

We have to perform 52 </ SA all other approximations
applied before t& <. In (29) the integration variableg | in
A ; o — pressed from34).
mjjgrllctlofn.//dﬂ:s SbeStméted gybtwok ”g'g valutteas!—o anc? h The integrals from bilinear combinations of the approxi-
917 <Kg, Tor the Tforward and backward scattering, and e, e Green's functions can be easily evaluated
g | integration is performed around these values. If the same
substitutions are performed {80), then thek,-independent 15 (w1;Ky,05)

function 82, </ A results

and the functionsG2 (k,w) and G~ (k,w) can be ex-

dk _ _
Ef LG (k 1+ Kof2,01+ ) G2 (K 1—Kof2,007)

5E<( ‘ ) de_ ) + 2T
JRE— : , = —n _
5Aiwl 2,Wo 2’7TB @ ;1foodk1 1
G T C) w27 K+ kof2F a(wy+ wo)
X Ff(mm(wl—w;kz.wz) 1
X ==
5G< _ k 1_k2/21 a*(wl)
+Fb(mm(w1_w;k2,wz) , i 1
31) ~TCo (CokpThwp) T (S (w1 + @) 3 (wy))”
where thek;-independent(but the sign ofk;) linearized . clk_1 _—
functions are defined by 15 (w1;ks,03)= L 5. Ca(Katkel2,01+ ;)
5G~ dk, 6G< —

W(Wlikzywz):f o ﬁ(k 1,01:Ky,w5). (32 X G (k 1~ ka/2,01)

Here the signst mean integration in the neighborhood of Ne(fort iyl (w1ike,wo),
the value ;= *Kkg, which correspond to the two branches
of the electron dispersion law in 1D. Note that these signs are; (w;;k,,w,)= j
reversed in the second term @&1). Thek;-independent lin-

earized propagators for a self-energx"?/SA relate to - —
53=715A by (15). If Egs. (17) for the present model are XGI(k 1= Ko/2,01)

integrated as if32), then a new closed system of equations ) .

for (6G="18A.)(w;:;k,,w,) can be derived. =—ing(fiwy)l7 (01K, @5). (35

dk, , —
. ZGi(k 1+k2/2,w1+w2)
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After the selection of one of the valués,~ =k, the inte- C. Reduction to one transport equation

grations in(35) can be directly performed. Extension of the | (10) we have shown that
integration interval from one of the branches of the electron

dispersion law to the the whole real axislof makes prob- 5G™(1,3 5G<(1,3)

ably only small errors. . ’ ]
These integrals can be used to define the new set of oU(2) su2) 2 31
coupled equations [analogously the equation for
(6G~15A L) (wq Ky, w5) resulty After a Fourier transform to the momentum-frequency rep-
_ resentation K, ,w1;k,,w5) in (16), this equivalency is not
0G fulfilled by separate frequency components, but only by their

5At(w1;k2’w2) integral over the frequency,. It is interesting that thev,

integration could be effectively substituted in this role by the

r K . . . .
_ iﬁkF 53 (wl,kz,wz))ls (013K, 05) ky |ntegr>at|on in(32). If we apply.|n(3§) and its counterpart
m  SA. for (6G~/5A.)(w1;Ks,w5) the identity (19) and the rela-
rk ssa tions (35) betweenlfzys, then after some little algebra the
4| +—F 4 W(wl;|(2,w2))|2+(wl;|(2,w2) mentioned equivalency results
m +
5 < G> <
+|f(w1§k2,w2)5Ti(w1;k27w2)- (36) K(wl;kbwz):_K(wl;kbwz)y
In (36) the momentum prefactor is approximated by the
Fermi momentum and taken out of the integrals. 5G"2
Application of the solution of(36) in the formula(22), K(wl;anwZ):O- (38

little modified for the present case, gives the ac conductivity

Fulfillment of (38) is a consequence of the quasi-local char-
2ihe? dol 8G=< acter of our interaction, which gives a very weak momentum
vFJ (5A —(w;k,w) dependent electron self-energy. This dependence can be ne-
glected and the necessa#y-energy integration, leading to
5G< (10), can be shifted to thk;-momentum integration, due to
— W(w_;k’w))' (37) the unambiguous pole relationship (i84).
- Relations(38) reduce the system of linearized transport
Note that the corellation part of the conductivity7) does equations to one equation, which is derived here for the
not cancel the diamagnetic term ({@2), due to the approxi- electron-phonon interaction. By the relationshi{®8) and
mations of the integral§35) (see also Ref. 20 Fortunately the equivalency(19) the linearized propagators for a self-
the diamagnetic term does not influence the experimentallgnergy can be expressed frof@1) and its counterpart for

o(k,w)=

accessible real part of the conductivity. 8271 8A .« as follows:
|
62" 1 do dwq 6G= C
A -5 (017K, wz)—_zw TI&JE f(wl) (w 1K, w2)+Fb(w1) A (w—w1;ky,w3)|. (39

We can substitute the expressia@®) into the transport equatio(86), multiply both its sides by the inverted function
|7 (w1;Kp, @), and reorder terms. Then this single transport equation has the form

<

. oG
ICo[ £ Coky—hrwp+ 2" (wy+ w2)_2a(wl)]m(wl;k21w2)

2
< <

Fi(wy) 5A+(w1_w_1?k21w2)+ Fb(ﬁl)m(wl_ﬁl;kZ-wz) +i[Ne(hwi) —Ne(hoi+ho,)]

ik do; [ ne(hw,+ 1 +ne(A
== [ne(h +hoy) —ne( ﬁwl>]+J “’1( alle “’22) a ‘”1)+ns<ﬁw—1>)

do 1 do; 6G= 6G~
X er . (wl)éA (0—w1;Ky,0) +Fy (wl)ﬁA (0= 1Ky, 07) |. (40)

Equation(40) is similar to the Holstein equatio,derived for the electron—phonon interaction with acoustical phonons, but
in (40) no limitation to the strength of the interaction has been applied. The validity of these equations is probably the same
as equations in Ref. 10.
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For not very strong interactions a pole approximation for a self-energy sometimes called the second quasiclassical approxi-
mation, can be applied. For weak interactions the quasiparticle spectrum can be substituted by a free particle spet@rum. In
this can be performed as followsiw,~ey —u, (0=Eg), fiw;~e, —€ —q, andfido;~%v\ dg=Cq dq,. This substitu-
tion diminishes the frequency variable;, and reinstalls the integrated ok variable. It would seem that the frequency
variable w; could be integrated out fromx'(k;,w;) at the beginning. Unfortunately, such an approximation cannot be
reasonably performed, because the self-en&rg¥k,,w,) is strongly dependent o4, but weakly onk; .

Substitution of the free pole values in the E40) leads to the following Boltzmann-like equation:

. €, M €k, M 5G<(ekl_,u
|C0 iCOKZ_ﬁw2+2r % +(1)2 -2 A SA \ 5 1Ko, 02
ifike Co dq [ NF(e, —pthwy)+ne(eg —u)
:iT[nF(ekl_M"_th)_nF(ekl_M)]+J' 2k 2 +Ng(, € —q)

€, €, -q 5G<(ekl—q|—,u €, ~ €, —q 5G<(ekl—q|—,u
Xl =% AL\ T Kooz TRy T AL\ T R K22
) do 1
+|[nF(ek1_:“)_nF(ekl_M_Fth)]f ﬁele—ﬁw_
Co dq €, ™ €k -q 5G<(_ €, €k €, kg 5G<(_ €k, ™ €k -q
Xf 2 Ff 7 5Ai\w_ 7 ,kz,wz +Fb % 8A;\w_ A ,kz,&)z .
(41)
|
The final formula for the conductivity37) can be changed In Fig. 1 we have seen that magnitudes of the functions

similarly. We should also perform i@1) the linearization of  Im 3{, .apackwark®) iN the plateaus are of the same order.
the electron dispersion law, to get an agreement with th@his means that the rates for relaxing electrons from their
approximation applied a¢33). The performed approxima- incoming states by forward and backward scattering are
tions are summarized in Table (the first/second row corre- similar. Averaging of 1/IM ., aabackwark€) With the distri-
sponds to the forward/backward scattejirlg the Appendix  pution functiondf,(k)/de,, as in(D4), gives the average

C a direct comparison shows that the Holstein equation ifimes between scattering eVerts) orwardibackwara At high

the present system is identical (@1). temperatures the structure in B,arapackwark€) disap-
pears and it ap_proximate_ly ho'%s}fcrwarﬁ(Ts?backward
D. Numerical results for two-particle properties Below T~1 K this approximate equivalence fails, because

. . the time( 7¢) packwargdivergesd? like expcT2), due to the fact
We have applied the transport equati¢46) and(41) and o4 yhe distribution functiordfy(k)/de, does not overlap
the Holstein equatioiiC3) to the present problem. The nu- the plateaus in Irx!
merical results of these equations are practically the same, s0° 5 """ ha?]aék‘“{%rg electronomentuns relaxed by
\éve do no(tjdistiﬂguishl between thﬁm her(le. Tlhe results are ﬁr%e forward and bacl&ward scattering very differently. For-
iscussed in physical terms. To this goal relaxation times caf : . ’ i
be usedsee their definition in the Appendix)DWe discuss Ward scattering does not change the sign of the electron mo

: . mentum and practically preserves its magnitukle<(k), so
tehrg aeV(rar:Zl?neeztmu;t;gmfaetirl)rﬁ?rg:r;ngee\ﬁ:tgzla?grttmee ?c\J/r- the momentum is relaxed very slowly. Backward scattering
9 p) SEP y ives an opposite sign to the momentum and changes its

. o g
ward and backward scattering processes. Additional mdlcegnagnitude slightly, so the momentum is relaxed quite fast.

forwgrd,_backwardare “?ed at these times, which chqracter—The different character of these scattering processes becomes
ize fictitious systems with only one type of a scattering. In

most situations one of the processes dominates, so that die\_/ident in the conductivity or equivalently in the magnitude
P Y 53 the momentum relaxation timerp,). Already at high tem-

ion of r r isr nable. After the intrQ- : >
cussion of separate p ocesses 15 reaso able. After the int Beratures the two scattering channels have very different mo-
ductory summary some numerical examples are presented.

mentum relaxation times7p)tomwar™ { 7p)backware At 10W
temperatures it holds thétr@backwarfexp(cT‘l), similarly

TABLE Il. Scattering channelgéapproximate regions of param- as before.

eters. These facts can be arranged as folldase also comment
K o6 R at Fig. 1 and Eq(D6)]. At temperatures higher thaf=1 K
a KR kG backward scattering dominates, so the total timg is sup-
+ ke 0 +CyQ, w+Co(xk—keFq)) pressed approximately to the total tifie). Below T~1 K
+Ke +2ke FCy0, u+Co(xk—kexq) backward scattering freezes out and forward scattering domi-

nates. Thereforér,), given here practically only by forward
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law of a momentum. Similar results can be found for the

8 g
10 homogeneous ac conductivigk=0,0+#0).
We can also briefly comment on the numerical solution of
106¢ the transport equations, solved here by iterations. The itera-
zd tions have started from the nonvertex solution and the vertex
S 104F corrections have been switched on very slowly, because the
2 convergence radius is closely approached during iterations.
102 We have multiplied the vertex part i#0) by a number,
; which was varied in an interval;,,=0.8—0.99 during the
: - iterations. It is also suitable to start the next solution from the
100 01 1 0 previous one and not from the new nonvertex solution.
T [K]

2. Inhomogeneous conductivity

FIG. 2. The dc conductivity in the temperature interval The inhomogeneous conductivity(k#0,0) is more
T=0.1-10 K for parameters in Table I. We relate the conductivity complex. The real part of the conductivity R€¢k,w) is a
to a reference value ;= (2€%/h)l o, where the reference length is symmetric function of the excitation wave vectar which,
le/=1 um. At higher temperatures vertefull line) and nonvertex  for a nonzero excitation frequency, is formed by two
(dotted ling solutions coincide. In the intermediate temperaturespeakS located at k... Their position is determined by the
the backward scattering freezes out and the vertex conductivity rag=armi velocityv aSwwv,:| Kk SJ and their widthAk can be
idly grows. BelowT~1 K only the forward scattering contributes approximately related Witfrle the dc transport time by
and both solutions follow a third power law 2. . .
(7p)~2m/Akvg (the width of the nonvertex solutiof ok
. fulfills the same relation for the timerg)~2m/A o kvg). As
scattering, grows and becomes much larger tha). The  the frequency goes dowm—0, the two peaks join each
times(7s) and(r,) are approximately in the same relation- other and the total weight below the curve &, ) can
ship |Ike the nonvertex and Vertex_conductiyity. If vertex Change in dependence on the type of a dominant Scattering
corrections to the conductivity are included in our mOdeLprocess. If only the forward scattering is present in the sys-
they are not very important at high temperatures, while theem, then the weight is preserved. If also the backward scat-
completely renormalize the conductivity at low temperaturestering is present, then the weight goes doitith 0 for elas-
tically approximated backward scatterifiy Therefore at
1. Homogeneous conductivity high temperatures(backward scattering dominajeghe

Let us first discuss the homogeneous conductivity\’veight falls down greatly as»—0 and deeply below the

o(k=0,w). At high temperatures the frequency width of thefregzing temperatureforward  scattering dominatesthe

distribution functiondng(%# w)/dw is broader than the gap in weight 1S preserved. .

Im 3} {w). Therefore the backward scattering contrib- In F'g'. 3 we present the behavior of the-dependent
backwar - : . ductivity asw—0, calculated from the transport equa-

utes to the conductivity, where it dominates over the renors " y ) P q
: . tions (40). The weight below the curve Reg(k,w) is pre-

malized forward scattering. The nonvertex Kubo formU|aserved for the low temperatuie=1 K. while it goes down

gives here approximately the same dc conductivity like th T—2 K. where th E kward ,tt ety ¢

transport equations. At lower temperatures the distributioﬁOr » where the backward scattering 1S present.

functiondng (%2 w)/dw overlaps only little with the structures

in Im X}, wad @) and the nonvertex Kubo formula fails.

Below T=~1 K the distribution function is fully localized ~ These results are reflected in the ac conductéifeg [do

inside the gap in INE} ,..ward @), SO that the backward scat- ot confusel'(w) with usual symbols for an electron—

tering completely freezes out and the forward scattering?hoton or electron—phonon verfexthe conductance could

dominates in the conductivify. e definetf by an absorbed powét(w) of a locally excited

In Fig. 2 we present the homogeneous dc conductivityduantum wire in the electric fiel&(x, w)

o(k=0,0=0) in the temperature interval =0.1-10 K,

calculated from the transport equatiof@l) for the param- [ (w)= P(w) ‘b(“’):f

eters from Table I. This figure clearly supports conclusions T P(w)2’

from the previous paragraphs. At higher temperatures vertex

solution (full line) and nonvertex solutiofdotted ling coin-  where ¢(w) is the change of the electric potential in the

cide. At lower temperatures backward scattering freezes outadiated region. In & representation the absorbed power

and belowT~1 K, where the forward scattering dominates, can be expressed by the conductivity and the acting field as

the vertex solution is about two orders bigger than the non-

vertex solution. Here both solutions for the dc conductivity 1 )

give a low-temperature asymptotic behavior of the form P(w)=§f o Reo(k,)|E(k,o)[*. (43)

T3. The presence of the forward scattering at low tempera-

tures changes an exponentialliroehavior of the conductiv- If the radiation falls only in a space interval of the wire with

ity exp(cT %), from freezing out backward scatterifit?*to  a finite length

a power law inT. The third power is probably a consequence

of a confined geometry, which breaks down the conservation E(X)=Eq[O®(x—L/2)—0O(x+L/2)],

3. Conductance

' dx E(x,w), (42

irad. reg.
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40 : ‘ : 1.0

103 Re o(k,0) / Gper
[\
(=]
T'(0) [2e2/h]
(=]
W

0= T . .
0.0 0.1 0.2 0.3 0.4 1 10
k [mm-1] T [K]

FIG. 4. The dc conductance for the vertéull line) and non-
T=2K vertex solutions(dotted ling as a function of a temperature. As
T—0 both solutions approach the value??h. AboveT=1 K the
vertex solution sharply goes to a smaller value, determined by the
inelasticity of the backward scattering, while the nonvertex solution
relaxes very slowly. For a finite length=2 um a cut off is seen at
some temperature in both solutions. It results from a competition of
L with 27/Ak(A,K), and corresponds to a transfer in the Ohmic

10-3 Re o(k,0) / Oyt

regime.
0 : - ; . . .
0.0 0.5 1.0 L5 2.0 rections. The magnitude of the changed conductance is rather
k [mml] given by the degree of inelasticity of the backward scatter-

ing, than by the strength of this scattering. P45 K the
FIG. 3. Thek-dependent ac conductivity for different excitation nonvertex solution suddenly falls down, because &,k
frequenciesw and the temperaturg=1,2 K, calculated from the approaches the excitation lendth=2 um. In the vertex so-
solution of transport equations. As this frequency grows a resonanitions this falling is characterized by the lengthr/2k.
peak forms in Rer(k,w) and moves to higher resonant wave vec- physically, this falling down corresponds to a transfer from
torsk of the excitation field. As the frequency falls down-0, the  he pallistic in the Ohmic regime of the conductance.
surface below the curve Re(k,») can be reduced. In the upper  \\e have also evaluated the ac conductance, in order to
drawing (T=1 K) backward scattering is frozen up and the sun‘acesee the influence of high-frequency electric fields on the
is preserved, while on the lower drawing £2 K) the backward 1y cking. The results are presented in Fig. 5. Belbwl K
scattering is present and the surface is not conserved. the backward scattering is frozen up and the conductance is a
flat function of o, starting from the asymptote
then the ac conductance can be expressed as I'(0=0)~2e%h in Fig. 4. AboveT~1 K this asymptote
falls down, since the backward scattering survives. This fall-

dk sin(kL/2)\? . o -2 o
- | == o ing of I'(w) is disturbed by the excitation field, if its fre-
I'w) fZW Rea'(k,w)( L2 ) (44)
The source with the length has ak spectrum localized 1.0 .

around the origirk=0. Therefore the conductanté& ) in
(44) becomes sensitive to the area below the curve
Reao(k,w). For usual lengtht (in range of microng the
momentum width of the function(sinkL/2)/(kL/2))? is
larger than that of Re(k,w). Therefore the change of the
surface below the curve Re(k,w) asw—0 (see Fig. 3is
reflected in the conductand¢d4). T=2K
In Fig. 4 the dc conductand&(w) from (44) is evaluated
for the solution of the transport equatiof$l) or equiva-

05|

I'(®) [2e2/h]

lently the Holstein equatioiC3). The excitation source of 0'01().9 108 107 106

the lengthL =2um is considered. We can see that the value ho [eV]

2e?/h, characteristic for a Fermi liquit?, is practically

reached by both vertex and nonvertex solutionsTasO. FIG. 5. The frequency-dependent ac conductafi¢e) for

Nevertheless, recent theories and experiments support the-1 2 k. In the limitw—0 these curves approach the dc conduc-
Luttinger liquid behavior, which cannot be described by theiance (w=0) from the previous figure. At low frequencies both
Migdal self-energy. The onset of a backward scatteringurves for the ac conductand®(w) are flat. As the frequency
aboveT~1 K is accompanied by a sharp falling down of the grows, blocking aff =2 K becomes disturbed, so that both curves
vertex solution. This can be understood as a blocking of th@aturate to the common plateau close &/B. The nonvertex so-
wire by consequent scattering of electrons in backward ditution would be concave at all temperaturesaas: 0.
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qguency followsw>vAk/27r. Therefore afT=2 K the ac  problems. The method could be systematically generalized to
conductancel (w) is a convex function of frequency as probe stationary nonequilibriuthor nonstationary systenfls.
w—0. The convexity ofl'(w) has also been predicted in A nonlinear response of quantum systems could be defined
capacitance effects, characteristic for resonant tunneliny higher-order functional derivatives over external fields.
devices?® The nonvertex solutiof, which is a flat concave

function of frequency asv—0, is not presented here. At

higher frequencies interference d]ibsérom the finite length ACKNOWLEDGMENTS

of excitationL=2 um might appear in all solutions. ) » .
In experiments usually a short channel is connected to 1he author would like to thank B. Velickfor wide sup-
broad contacts. Then a conductance defined from a transmiBO't of this project and for many stimulating discussions. He

sivity of this short chann@l probably does not fall down as IS also grateful to P. Lipavsky. Spicka, and J. Mask for
much as in Fig. 4. This is because, in experiments, backwargiscussions of the formalism and many helpful comments.
scattering of electrons in the ballistic regime usually takes! "€ humerical part of this work has been done on CRAY
part outside of the short channel. The scattered electrons dgMP EL at the Institute of Physics and on STARDENT in
not return back to this short channel, but spread out in thé:SCOC Laboratory, Prague.

contacts. As a result the Fermi level in the constriction is not

well stabilized against shift by the electric field, and blocking

is not possible. In more realistic calculations screening APPENDIX A: SUMMARY OF GREEN’'S FUNCTIONS

should be also included. Our nonscreened results correspond

only to the drifted part of the total conductivi. In this appendix we define Green’s functions for real

times (analogously, the Matsubara Green’s functions can be
defined in complex timgs Some standard relationships be-
IV. CONCLUSION tween functions with different analytical structures are also
introduced.
We have developéd a linear response method for quan- The causal(time-orderedl fermion (O=4) or boson

tum many-body systems by linearization of the nonequilib-(0=A) Green's functior® are defined by

rium Green’s function equatiohsn the integral form. The

linearized integral equations result in a simpler way than the . i " ] )

linearized differential equatior’$,because some transforms C'(1,2=—(T[O(1)0'(2)]), j=(r;.t) (j=1,2).

can be avoided. In the new method also the one- and two- (A1)
particle points of view are very closely interconnected. ) . )
Therefore the method is more direct than the Kubo formulaCorrelation functions are related to the causal functions
where vertex equations of different analytical structures mustY
be solved in the first step. I s _

As a demonstration example, we have calculated a linear i1G(12)=G"(1,2=(0(1)0'(2)), t>1,,
response of a quantum wire with an electron—phonon inter- — iyt < At
action to longitudinal electric fieldS. After application of FihG(1,2=G"(1,2=(0(2)0(1)), i<ty A2)
standard approximations from metals to the linearized equa-
tions, we have obtained the Holstein equafibrheing a  where the uppetlower) sign applies for fermiongbosons.
weak scattering limit of the Kubo formula in the present The retarded and advanced Green'’s functions are defined by
problem. The Holstein equation has been solved, and from
its solutions the ac/dc conductivity have been calculated. We
have realized that for high temperatuiies 1 K the solution
of the nonvertex Kubo formul4 agrees with the Holstein
equation. At lower temperatures the scattering of electrons in a i - -

a backward direction freezes out and for temperatlired G(1.2= 59(2_1)[G (1.2=G(12]. (A3

K the forward scattering completely dominates. Here both

the solution of the nonvertex Kubo formula and the Holstein  |n space homogeneous systems the Green’s functions de-
equation go likeT 3, but the vertex solution of the Holstein pend only on the difference=r,—r,, so that in thek rep-
equation gives a much larger conductivity. Similar effectsresentation they result as

have been found in the ac conductivity for homogeneous or
inhomogeneous probe electric fields.

These results have been applied to evaluation of the ac/dc
conductance, calculated from a locally absorbed power by
the systent® The one channel dc conductance approaches its i +
ballistic value 2%h below T~1 K. Above this temperature =~ rzm Ok )0k ) ]). (A4)
the dc conductance sharply decreases, since the backward
scattering becomes active. This blocking of the transport bylere the operator is equal toO(k,t)=a(t) or
the backward scattering is disturbed, if frequencies of theD(k,t)=bq(t)+bfq for fermions or bosons. In a thermody-
excitation field are bigger than the backward scattering ratenamic equilibrium they depend also on the difference

We believe that the new method, introduced and testeti=t,—t,, and after a Fourier transform over times the ferm-
here, can be applied in more complicated linear responsien and boson correlation functions réad

G'(1,2=— 7

0(1-2)[G7(1,2=G~(1,2)],

Gt(kitl,tz)zf dre kG (Kk;ty,ty)
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G=(k,w)=ng g(hw)Ag(k,»), tion is the same as for the linear response function
' (A5)  L(1,2;3,4), used in standard approachi&s.
G™(k,w)=(1Fng g(fiw))Ag(k, o), Consider that electric and magnetic fields acting on the

studied quantum system are zero. The scalar and vector po-

whereng ,ng denote the Fermi-Dirac and Bose-Einstein dIS'tentials, coupled by a gauge transform, can still be nonzero.

tributions This equilibrium system can be described by differential
equations foilG="~ in the presence of the potentiis
Nep(fiw) = gomr 1
and the spectral function is defined by AD=VA(LY,  ¢rh=-cZAry, (B
Ac(k,@)=—2ImG'(K,w)=G”(k,0) +G=(K,). for any reasonable gauge functiar(r,t).

(A6) The solution of these equations can be expressed as

From Kramers-Kronig rules it follows that the retarded ferm-
ion or boson Green’'s function can be calculated from its
spectral function(A6) by

G<7(1,2:A)=exg —A(1)]G=(1,2:A=0)exg A(2)],
(B2)

o which can be checked by the substitution(BR) into the
= do Ag(k,») (A7)  equations forG=~. The same solution should result from
the integral form of these equatiof&10).

Variation of G< in (B2) over the gauge functioA gives
Most of the above formulas hold not only for the Green’s (analogical expression results f6r)

function but also for the self-energy. For example the spec-
tral function for the self-energy can be represented by corre- _ _
lation functions for the self-energy as {A5). Then the re- 9G~(1,2A) = (8(2—3)— 8(1—3))G=<(1,2:A =0)
tarded self-energy can be found from its spectral function  SA(3) Ao - '
by (A7). (B3)

The nonequilibrium Green'’s functions are derived by ana—F the other side. f infinitesimal ch f1h
lytical continuation of the Matsubara Green’s functions in rom the other side, for an infinitesimal change of the gauge,

z . .
complex times. In NGF it is often necessary to find the the change of5™ in the potential{B1) is equal to
retarded or small part of a combination of functions in com-

Gf(k,w)=J

2T w—wFid

. . <
plex times. An example is the product 5G<(1,2;A)=J' 43 62{)8,)2) ( B % %A(S))
A(1,2=—iB(1,2C(1,2), (A8) 3
. , . 5G<(1,2
where A,B,C are one-particle causal Green’s functions or —————.V3A(3)]. (B4)
self-energies and the numbers with bars mean that these pairs 0A(3)

of coordinates are ?ntegrate.d out. The required functions caRfier the per-parts integration ifB4), the variation results as
be found by analytical continuation along a complex ctirve

and reduction to the real axis - -
19 867(1,2 5G<(1,2)
Tcaty oh(3) % SA(3)
(B5)

A'(1,2=B'(1,2C<(1,2+B<(1,2C%1,2. (A9) o
o ) The two variationgB3), (B5) must be equal. Therefore we
Other structures can be handled S|m||ar|y. The |ntegral Verget the f0||owing ana'og Ogeneranzed Ward |dent|t|e%
sion of the Dyson equation leads to the following equation
for the nonequilibrium correlation functiofequation for

8G<(1,2:A)
A<(1,2=B<(1,2C<(1,2), SA(3)

A=0

< <
G~ results by the exchange of sigrs and > here: E i 5G—(1’2)_ . 5G—(12)
- - c dt; S¢(3) 3 S5A(3)
< —r —1\r <
G (112) G (113)(60 ) (314)G0 (415) :(5(2_3)_5(1_3))G<(1,2), A:O, (86)
_l .
X(Go )%(5,6)G%(6,2) which can also be interpreted as a numbrarge conser-
F1 S <3 A vation law?! obeyed by the linearized function$G=/45U.
TE(1L,I27(34C%(4.2). (AL0) Similarly, other laws can be derived.
The nonequilibrium propagator&'™2 can be found from

G=" by (A3).
APPENDIX C: COMPARISON WITH THE HOLSTEIN
EQUATION

APPENDIX B: FULFILLMENT OF CONSERVATION LAWS . . . . .
In this appendix Eq(41) is compared with the Holstein

Here we present an analoggéneralized Ward identiti@s  equationt? which results by application of the Kubo formula
for the linearized function$G</5U, which can be applied to the electron—phonon interaction in metals. Holstein ap-
to prove conservation lawsfor these functions. The deriva- plies the Migdal approximation of the electron self-energy,
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but does not exclude its momentum dependence. His equ e—

tions result from pole approximations in a vertex equannTﬁvkq ho+3' Kk —Ea(k, 7 ”QSK

which can be then inverted to a transport-like form. This

equation can be identified with a linearized Boltzmann equa- ]

tion in the limit of small external frequencies. =i Fs(kk=0) di—q
In the Holstein work? the momentunk is bound to the a

pole energye, as (k,(e,— u)/%). Then the transport equa- where the functior-4 in (61) results from the vertex equa-

tion can be written as follows: tion. For our problentg reads

ek_/u
J’_
i

(CY

NE(€k—q— M)+ Np(fiwg)  1—ng(e_q—u)+Np(hwg)

- + -
ek—ek_q|+ﬁwq—l5 ek—ek_ql—ﬁwq—lé

S(kk—q)) 2 Vql?

n,:(ek_ql—,quﬁw)anB(ﬁwq) 1—nF(ek_q|—,u+hw)+nB(ﬁwq)
ek—ek_q|+ﬁwq+i5 - ek—ek_ql—ﬁwq-i-ié

© dhw g @)
—[n,:(ek_ql—,u-l—ﬁw)—n;:(ek_ql_,uv)]Pj_m 27 B q—fiw

i €~ €k—q
+ E«/é( q TI) [2+2ng(ex—€x—q) ~NE(€-—g— 1) ~NE(€&-—q—uthw)]. (C2

In the second expression some algebra has been used, which together with summation of the transversal mpimahim
producteq|V(q)|25(~ --) gives the effective spectral distributid@28). Therefore the integration oves in (C2) should be
performed at the end. As a result the above formulas and the following equ@®ptook rather differently than in Ref. 12.
To explicitly compare the equatioi€1) and(41), we must perform ifC1) approximations analogical those dong4).
When the pole substitutiolmw_lwekl—ekl_qI is performed in the exponent of the functiod from (28), then in this exponent

the momentuny, appears in two placeé{ekl—ekl,ql)/ﬁs)z—qlz. This function is approximated by giving the momentum

g, at the end of this expressioqfo the valueq,=0 (q,=2kg) for the forward(backward scattering. The same substitutions

can be performed in the exponents of the expres&).
After these approximations of/, the expressiofiC2) can be substituted in the Holstein equat{@i). We can also neglect
the small difference between obif ((e,— «)/%) and 3" (k,(e,— u)/A) in (C1). Then the approximated equation results

S

_Ea 7

+

ekl_,U«_k
P 2,02

i|:iC0k2_ha)2+2r +w2

dq nF(ekl—ql_M)+nF(ekl—ql_M+ﬁwZ)
_Uk+j -

27Th 2 _nB(ek1q|_ek1))

€, ~ €, —q €, —q "M
- 5 : >¢1( - % ;k2’w2

do 1
2’7T ekl_ek -q —hw

X

ekl_ek1q|) +(equ|—,u =

h h

F+ ;kz.wz

dg,
_|f [nF(ek1 q —pthior) - nF(ek1 q — )]

ek17q|_/Uv
+Fp(w) o= Tikzawz . (Cy

equl_/’l“_
F@s |~ kp,w,
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The relation between the distribution function in Ref. 12 and APPENDIX D: EVALUATION OF RELAXATION TIMES
here is¢. = o ((ex— n)/h), where ¢, resp. ¢_, corre-
spond tok>0 resp.k<0.

The conductivity can be found as in Ref. 12

In practice therelaxation time approximationf the Bolt-
zmann equation is broadly employ&t£233In this Appendix
we would like to mention this approximation in the context
of linear response methods.

o[ dk ek The relaxation ti imati be introduced i
o(q,0)=2€ — 0y ,q o e relaxation time approximation can be introduced in
k2 the Boltzmann equation as follow8:

X”F(erk_ﬂ)_nF(erk_,U«+ﬁw)

(C4

: af (k ak af(k
© L+v-Vf(k)+E-Vk( )=(%)
The linearization of the electron dispersion law from Table II collis.
must be also performed fC3) and (C4).
In order to show that EqC3) is identical to the linearized F(k)— fo(K)
transport equatior4l), it is necessary to compare all terms ~_ 7 0O
from these equations. The following identification can be (k)
found either from41), (C3) or from the conductivity formu- (DY)
las (37), (C4):
In systems which are close to equilibrium the timgk) can
SG=[ &, — M €, M be identified with thgequilibrium) transport time or equiva-
Co 5A+(T’ Kz, “’2) '¢+( k2"*’2) lently the momentum relaxation tinfé.Then the two right
sides in(D1), i.e., the exact scattering integral and the relax-
X[ne(e, —ptihiwy) ation time approximation wittr,(k), give in most situations
equivalent descriptions of the Boltzmann equation. Therefore
—ne(ex, —w)]. (€5 close to equilibrium the time,(k) can be directly evaluated
from the equatior{D1), as described below.
If this substitution(C5) is performed in(41), and Eq(C3) is In systems with an isotropic dispersion law for electrons

multiplied byi[ng(ex, — u+7%iwy) —ne(ex, —u)], then both  the electron momenta change in a static homogeneous elec-

these equations can be directly compared. Since the left sidésc field asdfik/ot= —eE. Therefore the solution dD1) is

are evidently the same, we have to compare the right sidexf the form
Let us compare first the leadir(§rst) terms of the right-

hand sides in these equations. If the seemingly different sta-

tistical factors are equivalent, then these terms are identical.

These statistical factors in the first terms of the right-hand

sides of(41) and (C3) look as follows:

f(k)=fo(k)+ ;Tp(k)E'ka(k)

%fo(k)—i-gfp(k)E-kao(k). (D2)

Ne(ex, —pthwy)+ne(ey — )
> +Nng(€, ~ €, —q,)

The second expression {D2) is anAnsatzfor the distribu-

X (e (k- g~ s+ fiwz) ~Ne(By,— g~ 1)), tion functionf(k), which assumes that the electric figtds
weak?%#2|f this Ansatzfunction f(k) is substituted into the

Ne(€y,—q—mthwy) +Ne(ey —q—u) exact scattering integradf (k)/dt)cqns. in (D1), then the
— > time 7,(k) can be evaluated froifD1). Holstein has applied

this approach when compared his formdfasith the linear-
ized Boltzman equation. There the functigg is considered
+nB(equ|_ek1)) (Ne(ex,— ptfiwy) —ne(eg, — p)). instead ofrp(k). o _
The transport timer,(k) is different from the time be-
(ce)  tween scattering eventg(k), which is an inverse imaginary
part of a self-energy in a pole approximation, multiplied by
The equivalency of these factors can be proven in severalyo. An expression for(k) can also results from E4D1),
steps. The expressions {@6) can be multiplied by all dif- if outcomingterms are preserved there, bontomingterms
ferent denominators with exponentials from the distributionsare neglected in the scattering intedfal~ the nonvertex
Ng,ng. Then all terms with different powers of Kubo formulg. For elastic scattering the two times differ by
exp(B(ex, —ex,—q)/%) can be compared. After some algebraan important factor *cost’=1—k-k'/k?, averaged over
the equivalency of factors ifC6) results. the outcoming moment&’ with the square of the matrix
The last(renormalization terms in Eqgs.(41) and (C3) element® This difference expresses the fact that vertex cor-
have to be compared in a different way, because the distrirections for a conductivity are included in evaluation of
bution functions have different arguments. After a detailedr,(k) but not in 74(k).
analysis, where the same integration variables are chosen, the The linearizedAnsatz(D2) can also be directly used for
two terms result as equivalent, too. evaluation of an induced current in the weak ffélE
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fik
m

If the nonvertex solution is used in the expressi¢b$),
then the relaxation time between scattering evenfk) re-
sults instead ofr,(K).

We can briefly discuss also the homogeneous ac conduc-
tivity, which is often described by a Drude formula. This
formula applies the relaxation time approximation in ac

d3k
J= —enoz—enof Wf(k)

dfy(k)
de,

L[ d%
=-e noj WTp(k)Vk(E'Vk)

(D3)

From (D3) a homogeneous dc conductivity in the relaxation

time approximation can be defiréd

_e2n0 d*k
3 | (2m)3UKTp

dfo(k)

In a free electron metal at zero temperature only the elec-
trons on the Fermi surface contribute to the transport. The

the dc conductivityD4) gets a simple ford?

eznoTp( kF)
o= ——"".

- (D5)

At nonzero temperatures,(k) is averaged by the distribu-
tion functiondfy(k)/de, in (D4), so that the timery(kg) in
(D5) should be substituted by thaveragetransport time

fields as follows:

_ezno d3k o Tp(k) dfo(ex)
3 (2m)3 kl—inp(k) de,

noe® {7y
m l-io(m)’

(D7)

Hhe first expression iiD7) can be obtained from the Bolt-
zmann equatiofD1) in the same way ad4). The acAnsatz
differs from (D2) by the multiplicative factor
UN1-iwTy(k)] in the right side of(D2). In a more exact
approach the second expressiond¥) should be written as
(T(K[1-iwTp(K)]).

Numerical results for the ac conductivity seem to fulfill
the Drude formulaD7) for some timer,(k). Therefore we

(7p). Only at very high temperatures might the averagingcould try to define the new ac relaxation time frai@7)

again become trivial. There, (k) is usually weaklyk depen-
dent and it can be taken out of the integ(B4). At high

temperatures also the vertices could be less important, since
scattering into all angles should become possible for ener-

getical reasons. Therefore the substitution of(k) by
75(K) might be reasonable.

From the similarity of the formul&D4) with (37), it fol-
lows that an effective transport time,(k) can be defined
directly from the Holstein equatiofC3) or from our trans-
port equationg41) [see(C5]. In homogeneous dc electric
fields this timer,(k) results

toe_ b _1Co, 1

=——= i

e Uk Uk ool NF(&—pt+hiw)—ne(e—p)
5G< ex— M
5A+(T’ "") (D)

similarly as in(D6) (the condition ish w<<kT)

k) e
l—inp(k)_ Uy
_iﬁCo 1
vk [Ne(e— ptho)—ne(ec—p)
e e—u
K(T,O,w (D8)

Here the solutions of transport equations in homogeneous ac

electric fields should be substituted. The relaxation time
could depend also on the external frequengfk, ).® The
definition(D8) is not applicable, whem,(k,w) appears to be
complex (or the imaginary part is relatively bigThen the
Drude-like formula is not valid.
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