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Coherent control of photocurrents in graphene and carbon nanotubes

E. J. Mele
Department of Physics and Laboratory for Research on the Structure of Matter, University of Pennsylvania,
Philadelphia, Pennsylvania 19104

Petr Krd
Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

David Tomanek
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
(Received 3 September 1999

Coherent one-photon (2 and two-photon @) electronic excitations are studied for graphene sheets and

for carbon nanotubes using a long-wavelength theory for the low-energy electronic states. For graphene sheets
we find that a coherent superposition of these excitations produces a polar asymmetry in the momentum space
distribution of the excited carriers with an angular dependence that depends on the relative polarization and
phases of the incident fields. For semiconducting nanotubes we find a similar effect which depends on the
square of the semiconducting gap, and we calculate its frequency dependence. We find that the third-order
nonlinearity, which controls the direction of the photocurrent is robust for semiconducting tubes and vanishes
in the continuum theory for conducting tubes. We calculate corrections to these results arising from higher-
order crystal-field effects on the band structure and briefly discuss some applications of the theory.

[. INTRODUCTION electronic spectra are described by a two-component Dirac
Hamiltonian®

The magnitude and direction of photocurrents in semicon- In this paper, we develop the theory of phase coherent
ductors are ordinarily controlled using applied bias voltagesone- and two-photon excitation within this model. The appli-
Interestingly the direction of a photocurrent in a semiconduc<ation to the graphene sheet turns out to be a useful peda-
tor can also be controlled without bias voltages throughgogical model, which is unusual for a semiconductor and
phase coherent control of the incident optical fields. In anicely illustrates the origin of phase coherent control of pho-
typical experiment an initial and final state are simulta-tocurrents for a graphene derived system. For graphene it is
neously coupled using two coherent excitations: one photoimappropriate to analyze the third-order nonlinearity by anal-
excitation at frequency @ and two photon excitation at fre- ogy with the third-order response in atomic systems, as has
quencyw. The coherent superposition of these two excita-been done previously for semiconductbrisistead, we find
tions can lead to a polar asymmetry in the momentum spacthat the third-order response probes the rather unique geom-
distribution of the excited photocarriers and therefore to a negtry of the extended low-energy electronic eigenstates which
photocurrent. The effect has been discussed theorefiéally occur within the graphene sheet. The application of the
and observed experimentally in photoyield from atdmsd  model to a carbon nanotube shows, interestingly, that the
for photocurrents in semiconductdrRecently, two of us third-order nonlinearity is suppressed for excitations between
have proposed that for carbon nanotubes this effect coulthe lowest subbands of any conducting nanotube and van-
provide directional control of a photocurrent along the tubeishes completely for transitions between the lowest subbands
axis’ and even suggests a novel method for biasing the difef a conducting “armchair” tube, but it is nonzero and ro-
fusion of ionic species which intercalate within the nano-bust for the gapped subbands of a semiconducting tube. In
tubes. fact, the effects we calculate are significantly stronger for

In this paper, we study the excitations that lead to thissemiconducting nanotubes than for a conventional semicon-
effect both for graphene sheets and for carbon nanotubes. tuctor. In principle this effect might be used to distinguish
both these systems the low-energy electronic properties retonducting and semiconducting tubes in a compositionally
evant to most solid state effects are determined by an intemixed sample. Other possible applications of the idea will be
esting feature of the band structure. The isolated graphendiscussed later in the paper.
sheet has only an incipient Fermi surface; it is actually a zero In this paper, we briefly review the effective mass theory
gap semiconductor where the conduction and valence bandisr the graphene sheet in Sec. Il. In Secs. Il and IV, we
meet at precise points in momentum space. The carbon nanderive the interaction terms in the long-wavelength theory,
tube is a cylindrical tubule formed by wrapping a graphenewhich couple the electrons to time varying electromagnetic
sheet and for metallic tubes the “zero gap” feature manifestdields and present a calculation of the coherent third-order
itself in a peculiar doubling of the low energy electronic nonlinear optical excitations using this model. Section V ap-
spectrum with “pairs” of forward and backward moving ex- plies the results to study the third-order response of an iso-
citations at bottkr and — kg .% In either case, the low-energy lated infinite graphene sheet. In Sec. VI, we use the theory to
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G2 is correctly described by the simplest model for electron
. propagation within the graphene sheet which is a tight-
, binding model in which the hopping of an electron between
. K ------- ﬂ\K . neighboring sites is set by a single energyThus, we have
m (‘" . “> h,,=(¢.H|¢,)=t (nearest-neighboruv)
~" T /e ~0 (otherwiss. @
® | VIONPEEpEppEp -

Working in the sublattice basis and at crystal momentum
. we have the Hamiltonian

FIG. 1. Direct and reciprocal space structures of the graphenﬁ(lz)
lattice. The primitive cell contains two sublattice sites labeéleahd
B in the left panel. The right panel shows the first star of reciprocal-

. . L —ik-T —iK-(To=T
lattice vectors and the first Brillouin zone. The long-wavelength 0 1+e KTt etk (2T
theory exr_Jands the eleptropic Hamiltonian for momenta neaKthe 1+eil€<f2+eilz-(f27fl) 0
andK'’ points at the Brillouin-zone corners. (5)

study third-order effects for conducting and semiconductingf we setk=K+q and expand the Hamiltonian fara<1
carbon nanotubes. A discussion and some applications of thge obtain the long-wavelength Hamiltonian
results are presented in Sec. VII.

. {3ta

0 axtiqgy
ll. EFFECTIVE MASS THEORY Hy(q) 5

qx_iqy 0

=hvpo*-q, (6)

In this section, we briefly review the effective mass de—Where > are the 22 Pauli matrices. A similar expansion
scription of the low-energy electronic states. The theory is 7 ' P

developed for an ideal graphene sheet, a section of which faear thek” point yields
shown in Fig. 1. The primitive cell of this structure contains Ho = —foeod 7
two atoms, labeled\ andB in the figure. The lattice is un- K= ~hvpo-Q. @)

changed after a translation by any combination of the twqdentifying each of the critical points with the indexso that

primitive translations vectors a=1 denotes th& point anda= —1 denotes th&’ point,
- these Hamiltonians can be rotated into diagonal form with
T,=a(1,0), the unitary operators
f,maf2 3 (1) L 1
2= 2' 2| Ua(Q):E _ae—im? ae—ia& ! (8)

where the bond lengtl=a/\/3. We introduce a pair of

- . ) - where 6=tan *(qy/qy). Thus,
primitive translation vectors for the reciprocal lattiGg such

thatG;-T;=2m5;; , yielding . —lal O
T UM @H @U@=t o= ] ©
. 4w (Y3 1
G1=—\/§a PR so that Eqs(6) and(7) describe pairs of bands that disperse
linearly away from the criticaK and K’ points. Note also
4 that Ha(ﬁ)=H’ia(—q) as expected. Equationi6) and (7)
5,= (0,1 (2)  and the unitary rotations in Eq8) provide the appropriate
V3a description of all the low energy electronic excitations re-
which generate a triangular lattice in reciprocal space. quired for this problem.

The critical pointK(K') are important to our discussion,
and they occur at the corners of the Brillouin zone of this Ill. GRAPHENE-FIELD INTERACTION HAMILTONIAN

reciprocal lattice at the positions . .
P P In this section we collect several results we need to de-

1 . ) 471 3 scribe the coupling of electrons described by. E§sand(7)
K= §(G1+ 2G,)= 322 7) to the electromagnetic potentials. For a particle ofech@ge
interacting with the electromagnetic vector potenflabnd
L 4 143 scalar potentiatb the momentum and energy are shiflﬁd
K'=2(=G1+Gy)= 3al 5-7) . ©) —>5—Q:&/C andE—E—Q®.” Thus, the interaction Hamil-

tonian that couples the Dirac particle to the time varying
The “bonding” and “antibonding” 7 electron bands meet vector potential Ac A is
precisely at thes&(K') points in reciprocal space. This
band touching is required by symmetry for this system and it H ey int= — aveQ(Aox— aAyoy)/cC. (10
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This interaction operator can also be obtained by calculating dp
the velocity operator from the commutator of the position T [Ha int(),p], (15
operator with the unperturbed Hamiltonian:

) where H,, is the free particle Hamiltonian anl , jn(t)

| - =eta ‘Ha int€ 'Mat. In the band basis the density matrix in

v“:%[H“ ] 1D the initial state has the form
and therefore 1 0
) po=p(t=—°°)=<0 0) (16)
v,=ave(oy,—aoy) (12
. since only the negative energy states of the Hamiltoniéns
80 thatH ,int=—J . A/C. and(7) are initially occupied.
It is useful to rotate the interaction Hamiltoni&hO) into We expand the density matrix order by order in the excit-

the band basis using the unitary operators in @4.To do  jng fields
this we writt q=(dx,q,)/|q] and compute H®

a,int
=UT(Q)H . in(qQ)U(q) giving p(t)=potpitpatpst:---. 17
n P Integrating Eq(17) to first order in the applied fields gives
(@A) = evg —g-A —iaz-(gXA)
q.A)= Aa s n s . ;
|nt ¢ liaz-(gxA) q-A _lievg 0 Fa(t) 18
(13 Pm%c -2y o )

This demonstrates that the coupling between the Bloch eleGyhere
trons and the vector potential depends on the angle between
v andA and that the interband matrix elemefighich are a2 (QXA,)e (B +ortio
the off-diagonal terms in Eq13)] vanish when the two are Fi(t)=  N——-
collinear. IndeedH,(q) and H, i(q,A) commute along
these special lines in reciprocal space, so that interband tran- wz- (ax,&f e (Ae)t=idy
sitions are forbidden along this trajectory. This peculiar fea- + " Ato—is
ture can be traced to the absence of a mass term in the ef-
fective Hamiltonians in Egs(6) and (7) which would az- (&X'&z ye~i(A+2)trid,
ordinarily mix the plane-wave solutions to Ed$) and (7) —Aiz 5
and thereby allow interband transitions by coupling with the @~
long-wavelength current operator. Whenand A are not az-(QXA_,, e (A-2)t-id
collinear interband transitions are allowed and the transition + A+ 20—i5 ) (19

amplitudes are fixed by the mismatch in their orientations in
the graphene plane. This has interesting consequences f@hereA=2v:q and § is a positive infinitesimal.
coherent control of nonlinear optical processes in the nano- The second-order termg, include the lowest-order
tubes, as we show below. changes to the occupation probabilities which can be induced
with excitation by thew or the 2w fields
IV. NONLINEAR OPTICAL EXCITATIONS

2 2
In this section, we present a calculation of the transition (,.),,= — (p,) 1= ———[|a2- (G X A,)|25(A - w)
probabilities for the third-order nonlinear optical excitations h2c?
among the electronic states given by the models in Secs. Il N
and lll. We introduce time varying fields of the form +az- (X A,)[28(A—2w)] (20

N - S - O as well as oscillating nonlinear off-diagonal coherence terms
A(rit)=A_ e '“tTid1+ A, e 2iottid2rc e, (14 g g

and study the response of the system to third order in these ie?

exciting fields. Asymmetries in the photocurrent are con- (p2)12= = #2c
trolled by the coherent excitation of electrons from an initial

state to a final state by one photon«R and by two one Anticipating the situation @~ A, the most important contri-
photon () processes. The coherent mixing of these twobution toF,(t) has the form

processes is studied by evolving the density matrix to third

order in the exciting fields and isolating the terms propor- E.(D (q-A_,)(az-qxA_,)e [(A-2)t=2id
tional to A ,A A 5, . S(t)= - -

It is convenient o study the time evolution of the one (At w=id)(~A+20-id)
particle density matri>p=<\IfT(F)lP(F’)). The Hamiltonian  The second-order coherence term in E29) leads to a tran-
for our system iH ,+H,, jn; and we work in the Heisenberg sition rate, which is third order in the applied fields and is the
representation so that source of the polar asymmetry of the photocurrent,

2
—TE. (21

(22
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AB =0 A9 =n/6 A =m/4 A8 =m/3 A9 =m/2

FIG. 2. Angular distributions of the transition rates given by &3). In each panel thé,, is polarized along the horizontal directi¢the
direction of the arrow in each ploandA @ is the angle between tifezm and/f\m fields. The polar plot gives the transition rate as a function
of the angle of the Bloch wave vectgrwith respect to the direction oia,. These angular distributions are superimposed on the angular
distribution for the direct transition rate, which is given by the second term ir(Z). The solid curves correspond tp4),,>0, dashed
curves to p3),,<0 when cosg,—2¢;)>0.

. 77330,3: o R relative polarizations and phases of the incidégtand,&h,
(p3)2s=——5 5 R (az-qXAy,)(q-A_,) fields. Figure 2 displays polar plots of the angular distribu-
AR3CE

tions for the situation where the amplitudes are in pliase
X(az-GxA_,)el¢2 2001 5(A—20). (23) A, andA,,, in Eq. (14) are presumed to be rddbr various
) . incident polarizations. Note that the underlying electronic
Equation(23) contains a factor of two from the sum over the gispersion relations are completely isotropic in the linearized
(physica) spins. Equation23) presents the main result of theory, and thus only the relative polarization of the two
the paper. It shows that the transition rate depends on thexciting fields is relevant for the interference pattern. In all
polarization and phases of both exciting fields and the Blocr?:ases&w is taken to be polarized along the horizontal direc-

wave vectorq. We will explore the consequences of the tion shown by the arrow in the plots. In each plot, we ob-
geometric structure of this result for the graphene sheet angerve a node in the current distribution along this direction.

for carbon nanotubes in the following two sections. For therpis follows from the symmetry dfi® ; . in Eq. (13), which
moment, we note that the result is odd in the direction of the . et

A ) - o ) shows that interband coupling is prohibited fpiparallel to
Bloch wave vectog and even in the critical point index (it

5 . A. Nonetheless, the situation for collinearand 2w excita-
depends orw?) and therefore the symmetry breaking non-.. o "
. s . . 2 . tion clearly shows the asymmetry between the “forward

linearity is nonzero after integration over the full Brillouin

and “backward” distribution of the photocurrent. The situa-
zone. o . ) o
tion is more interesting when the exciting fields are noncol-
linear. We observe that the angular distribution develops a
V. APPLICATION TO GRAPHENE “three lobe” structure. Ultimately, when the exciting fields

In this section, we apply the formalism developed in Seca@rea mutually orthogonal, we recover the “two lobe” pattern
Ill to study the coherent optical control of photocurrents forWith the angular distribution rotated by/2 with respect to
a single-graphene sheet. The model nicely illustrates the sél€ polarization of the incidenb field. It is useful to quan-
lection rules which apply in this geometry, and the resultstify the anisotropy of the distribution by calculating the av-
can be extended to analyze the more complex situation foerage polarization of the net photocurréobse) and(sin ¢)
the nanotube, which will be presented in Sec. VI. averaged over this distribution. One finds

We note that both Eq€20) and (23) contain terms that
describe transitions from the valence to the conduction band
at the frequency @=A. Equation(20) is the ordinary linear
absorption in the material. Interestingly, we see that the an-
gular distribution of the excited photocarriers is not isotropic ) 1
but rather follows a sfh¢ dependence with respect to the (sing)=—>sin¢ (24)
polarization of the exciting radiation. Nevertheless, this an-
gular distribution has even parity and thus does not produceo that when the @ field is tipped by an anglé with respect
a net current. On the other hand, E3) gives an angular to the w field, the photocurrent is oriented in the direction
distribution that breaks the inversion symmetry of the— 4. Finally, the “sign” of the effect is determined by the
graphene sheet. The symmetry breaking is actually implicitelative phases of the two exciting fields. Note that the phase
in the coherent superposition of the exciting fields. We willdelays¢; and ¢, in the exciting fields of Eg(14) modulate
estimate the prefactors to compare the relative strengths afie transitions ratésn Eq. (23) in the combination
these terms for accessible laboratory fields later in the paper;
for _the moment we noteighat the nonlinear terms in 28 (%) 20— (P3)22C0L b —2¢h7). (25)
typically contribute~10"° of the total transition rate, and
thus the induced anisotropy while nonzdemd we believe This does not change the qualitative features of the angular
measurableis a subtle effect. distribution but it can modify both its magnitude and its

The angular distribution in E23) is controlled by the overall sign.

1
(cos¢)= > cosé
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Thus the angular distribution in the collinear case=0 can EN E/VEA
be reversed by advancing the phase of ¢h&elds by 7/2. 3 F 3
VI. APPLICATION TO NANOTUBES 2 2
A. Low-Energy Theory for Semiconducting Tubes 1 4
In this section, we apply the formalism of Sec. Il to study Z o
phase coherent control of a photocurrent on a carbon nano- 3537 A2 3 9 55 92
tube. The essential complication is that the wrapped structure o

of the nanotube quantizes the allowed crystal momenta so -1
that the transition rate automatically contain an intrinsic an-
isotropy. Nevertheless, the formalism developed in Sec. llI
can be extended to include this situation.

We first define the geometry for the single-wall nanotube.
The nanotube is a cylinder formed by wrapping a graphene
sheet and the wrapping can be defined by the graphene su- FIG. 3. Optical excitation between lowest subbands of a con-
perlattice translation vector around the tube waist. We adopucting tube (left pane) are forbidden in the long-wavelength

the primitive vectors of Eq(1) as a basis and represent the theory. They are allowed for a semiconducting tube for the
superlattice translatiof . as gapped subbands of a conducting tubs shown on the rightA
MN

denotes the crystal momentum mismatch between the valence and

N \/§N conduction band states and €K ") points of the graphene sheet.
-FMN:M-F1+ N-T—z: M+ — —|a. (26) The right-hand panel illustrates one- and two-photon excitations,
2° 2 which interfere to produce a polar asymmetry in the photocurrent.

It is useful to define two unit vectors defining the longitudi- _ . . _
nal and azimuthal directions within the graphene plane ~ Representing the “reduced” Bloch wave vector with the

complex number'(iquJriqyzqe”’C and the momentum

é|=(cosﬁc,sin 0;) mismatch byZa=iAei % after a rotation of the coordinate
system by the chiral anglé, (so that thex axis runs parallel
e,=(—sin6.,cosb,), (27)  to the tube lengththe Hamiltonians in Eqs6) and(7) can
be written

where 6,=cos }M+N/2)/(YM?+N?+MN) is the chiral
angle of the tube. The wrapping of the tube quantizes the

- . 0 +iA
allowed momenta along the azimuthal directidne, Ha(q):ﬁvF( ) «d “ (31)
=27n/(ayM?+N%2+MN) while the electrons obey free aq—il, 0

particle boundary conditions along the tube direction and the

longitudinal componenk- ¢, can take any valu&:X° Thus, Note that in Eq.(31) H,(a)=H* ,(—q). The spectrum is
the loci of allowed momenta are “lines” in reciprocal space. Now E(q) = = yq°+ A< and the Hamiltonian is diagonalized
These lines need not intersect the critisand K’ points, ~ With the unitary transformation

which are used as a reference for the long-wavelength

theory. To determine the mismatch between the allowed 1 1 1

crystal momenta and th¢ andK'’ point wave functions we Ua(Q)Z—( i, i ) (32
resolve the Bloch wave vector KtandK' into its longitu- V2| —ae™'®Y ae™'®Y

dinal and azimuthal components. We find

where y=tan 1(A/q). This is the rotation identified in Eq.

:4_77 a \/_§ 28) (8) for the unfolded graphene sheet withplaying the role
“ 3a\2’'2 of the y component of the momentum. With this identifica-
tion the interaction Hamiltonian for the nanotube analogous
and to Eq.(13) in the band basis is
K .8 27| 2aM+N(3+ a) (29
o €=51 ’ eveA 1 —qQ iaA
" %2 )M NEEMN HE (@A) = o | REE)
: ¢ Jg?+AZ\-iaA ¢

which lies along the locus of allowed wave vectors when
2aM+(3+ a)N=6n. One third of the 1,N) tubes satisfy
this condition, and for the remaining two thirds of the tubes
the K(K’) momenta are mismatched to the kinematically
allowed momenta by a minimum amount

Note that the off-diagonal terms which describe the ampli-

tudes for interband transitions depend explicitly on the size

of the semiconducting backscattering gapand vanish for

the lowest subbands of a conducting nanotube as shown in
Fig. 3.

A = 2m (—1)mod@(N=-M).3) -~ (30) Thus, when the exciting fields are collinear and directed

“ 3ayMZ+NZ+MN along the tube direction the third-order transition rate is
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Third Order Rate B. Crystal-field effects for conducting tubes

Equation(34) gives the third-order nonlinear response in

'o
5 08 - . :
% 06 velocity weighted the long-wavelength limit where we can linearize the elec-
E 0.4 tronic bands around the criticl(K') points. Corrections to
= 02 N this result can be obtained in an expansiom@and physi-
550 700015002000 cally arise from crystal-field“trigonal warping”) effects in
i (meV) the underlying band structure. The most significant such cor-

rections occur for conducting tubes. Equati@#) gives a
FIG. 4. Frequency dependence of the third-order transition ratganishing transition rate for excitations between the lowest
leading to anisotropy of the photocurrent. The solid curve gives théyands of a conducting tube and trigonal warping of the band
transition rate of Eq(30) as a function of the exciting frequency structure of the graphene sheet provides a mechanism to
fw. To display the spectra we have taken a semiconducting gapturn on” these transitions even for conducting tubes. Thus
AveA =800 meV and normalized the incident intensity so thatg third-order nonlinear response is symmetry allowed for the
|A|=10"° T-m at all frequencies. The dashed curve is the transitiongwest subbands of a conducting nanotube, though it strictly

rate weighted by the final state velocity. Band-edge states arGanishes in the long-wavelength limit we have discussed so
strongly scattered by the mass term and do not contribute effecf

; ar.
tively to the photocurrent. To investigate the trigonal warping effects we rederive the

interaction Hamiltonian without adopting the effective mass

47mzesvg _ representation. ]’o do this we note that in the presence of a
(P3)22=WAZQ Re(Az,A_ A_,e(?272%)) vector potentialA the Hamiltonian(5) is perturbed through
the Peierls substitutioh—k—(Q/c)A. Therefore, we can
X 8[2E(q)—2hw]. (34)  calculate the current operator using,=—dH/JA,

=(Q/c)dHldk,, . In the site representation the Hamiltonian
has only off-diagonal elements, so we can write
Equation(34) is the origin of the asymmetry discussed in

Ref. 5. We note that the result depends on the square of the e. 0 Vit(K)
magnitude of the gaph and it vanishes for transitions be- Hin=— A .o (35
tween the lowest subbands of a conducting tube. The result is Vit* (k) 0

fnde(ir'”btgagzi”%en?vgggﬁgtgglwﬁ ﬁ’}:‘(’)‘\’;‘n"es 20 8V We also note that the Hamiltonian is diagonalized with the
y gp Unitary transformation:

The third-order transition rate is very small for high exciting

frequency since the high-energy electrons are very weakly 1 1

backscattered through the mass term in B4) and behave R R

essentially as free particles. These properties are displayed in UK)= — t*(k) t*(k) |, (36)
Fig. 4 which shows the third-order transition rate between V2| - |t(E)| |t(IZ)|

two bands of a semiconducting tube as a function of the
exciting frequency. It is interesting to note that the expectedvhich is the discrete lattice analog of the continuum result in
divergence in the one dimensional density of states at thresliq. (8). Thus, we can rotate the interaction Hamiltonian into
old is exactly canceled by the momentum prefacfan Eq.  the band basis according t'(K)H;,.(k)U(K), which gives
(34) and thus the spectrum shows only a steplike singularity

at the threshold. Thus, the transition probability for right- e A —Re(t*d t) ilm(t*o, t)

and left-moving photocarriers jumps discontinuously across Hibm(E): _ ® a
the critical point atg=0. Note however that the states near ¢

[t(k)] —iIm(t&kﬂt*) Re(t*akﬂt) '

the band gap have no group velocity and cannot contribute to 37
the photocurrent so the velocity weighted transition rat

(which is more relevant to this applicatipgoes to zero at

o — eneral chiral nanotube is complicatéd.general one may
thresho_ld. Th|s is shown by thg dasheq curve in Fig. 4. Th%ave interband matrix elements between lowest subbands of
results in Fig. 4 show the nonlinear injection rate for a per-

X X . @ F="a conducting tubgwhich are the off-diagonal terms in Eq.
fect defect free semiconducting tube. A slowly varying im- (37)]; albeit with greatly reduced magnitudes—the scale of
purity potential(long range disorder in the notation of Ref. {nase matrix elements is typically 10 2 the scale for the
12) can produce an additional channel for backscattering anghatrix elements in Eq(31), which are produced by the mass
will therefore further suppress the group velocity for elec-term in the linearized theory for a semiconducting tube. An
tronic states near the band edges. In the presence of disordgfportant exception to this rule for conducting tubes occurs
we therefore expect an additional rounding of the currenfor the armchair ¥1,M) tubes. Then one finds thatk)
injection rate, similar to that shown as the dashed curve in=e?™/3[1+2 cosk.a)] for propagation in the lowest sub-
Fig. 4. The range and strength of this suppression will debands of the tube, and we have

pend sensitively on the details of the long-range impurity

potential. The results of Fig. 4 are insensitive to this addi- [t* (k,)d,t(k,)1/|t(k,)|=tasgn[1+ 2 cogk,a)]sin(k.a).
tional backscattering deeper into the particle-hole continuum. (39

eExplicit evaluation of the matrix elements in E@6) for a
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FIG. 5. Frequency dependence of the third-order transition rate
involving the lowest subbands of a conducting zigzag tube, which
produce an anisotropy of the photocurrent. The dashed curve uses a
linear dispersion relation for the electronic states with the matrix
elements computed using the lattice theory of BF). The normal-
ization of the incident fields is the same as for the results of Fig. 4
so that the rates can be directly compafrdte the vertical scale
changg. These interband excitations are symmetry forbidden in the FIG. 6. Interfering excitations when the field is polarized
Dirac theory but become weakly allowed in the presence of crystalperpendicular to the tube and thes Zield is polarized along the
field effects on the low-energy electronic states. For a conductingube direction. The @ field excites transitions between subbands
tubes third-order transitions between the gapped subbands providendgth the same azimuthal quantum numbers. Thdield excites
much stronger nonlinear third-order response, as shown in Fig. 4 transitions withdm=*1.

3
. TEVE 2

Thus, near the critical points the diagonal elements of the (P3)22= 1%203"" @ sgn(q) Re(Az,A- A,

velocity operator are-vg and the off-diagonal components

vanisheverywhere Note that this occurs because of a tube x e'(?27291) 5[ 2(|t(q)| ~ fiw)]. (41)

symmetry; the armchair tube retains a mirror plane, whic
contains the tube axis so that the two lowest subbands of th
conducting tube can be indexed as even or odd under refle tthe t iti i ishes i I in f di
tion through this mirror plane. The vector potential along the at the transi '0”_“';‘ € vanishes finearly In requency, and 1S
tube axis is even under the mirror reflection and Canm?uppressed byflo W'Fh respect to.the interband transition
couple even and odd subbands. On the other hand, for rate for a semiconducting tube. This reflects the fact that at
zigzag tube one has(k):eikya/\sB'(l_’_e—i\ﬁB’kya/Z) This var’1- low-energy the effects of trigonal warping are relatively
ishes fork, — 21/ \3a which corresponds to a ‘:face” of the small compared to the backscattering from the mass term in
y

S Lo ! .~ _the low-energy Hamiltonian for a semiconducting tube. We
ZBigIZIc;uglr:uzbc;ne in Fig. 1. Thus, one finds for the conducting note that calculations of the frequency dependence of the

resonant Raman cross section for conducting ttsow a

strong enhancement of the cross section near the first inter-
(t* g )/t] band threshold, also demonstrating the suppression of inter-
band transition matrix elements between the lowest conduct-

he result is plotted in Fig. 5 using the same normalization
S in Fig. 4 for comparisofnote the scale changeOne finds

i 3i ik a/a ing subbands in these structures.
ta ﬁco§( V3ka/4) |~ TCOS{ V3ka/d)e 3y Figure 5 presentsnly the results for excitations coupling
= ) the lowest subbands of a conducting tube. Transition rates
|cog/3ka/4)| between gapped subbands are described by3).so that

(39) the transition rate displayed in Fig. 4 should be superposed
on these results. This situation calculated for a zigzag tube
) ] illustrates the generic behavior for a genersl,(\) tube if
Therefore, near the crossing poikj=(2m/\3a)+q one  one wishes to calculate beyond the linearized theory. Analo-
finds gous results for arbitrary chiral tubes can be obtained by
direct evaluation of the matrix elements in E§7).

(t* o)/ |t|~ @( 1—i a2 4. ) . (40) C. Noncollinear fields
2\3 This treatment can be extended to include the situation
where the exciting fields are not collinear. Interestingly, this

Thus, the diagonal matrix elements of the velocity operatotioes not change the qualitative frequency dependence shown
[the real part of Eq(39)] are constanfuvr(1+O(qa))?] in Fig. 4, although the prefactor is altered for noncollinear
while the off-diagonal elementghe imaginary pajtvanish  fields.
proportional toga near the Fermi points. This implies that ~ We will consider only the case where the exciting fields
the product of the matrix elements in the third-order transi-are orthogonal, since any incident field can be resolved into
tion rate vanish asga)? for the conducting zigzag tube. This its longitudinal(along the tubeand transverséerpendicu-
changes both the magnitude and the frequency dependenizg to the tub@ components. We observe that for a field per-
of the third-order transition rate. We obtain pendicular to the tube axis we have allowed interband tran-
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sitions only when the azimuthal quantum numbechanges We modify the interaction Hamiltonian E¢33) for the

by £1 since the vector potentigd “seen” in the tangent situation where the exciting radiation is polarized perpen-
plane of the tube i ¢é=Acos¢ whered is a unit vector  dicular to the tube direction. In the “site” basis one finds
that circulates counterclockwise around the tube waist. Fothat the interaction Hamiltonian for this polarization is

the graphene sheet this is equivalent to introducing a spa-

tially varying vector potential with wavevectorRAvhereR

is the tube radius. Thus, the third-order nonlinear process we < evpA (0 —i
are seeking is symmetry forbiddenﬁ% has a transverse Hain= c \i o)’ 42

polarization(the lowest subbands have the same azimuthal

guantum numbersHowever, it is possible to have the situ-

ation shown in Fig. 6, wherd,, is perpendicular to the tube WhereA=A(y)=A, cosf/R). They dependence implies that

axis, andE\Zw is polarized along the tube direction. Here the this interaction couples subbands with a difference in azi-

virtual intermediate state for the two-photon process is promuthal quantum numbers such thatsm= *+1 and we will

vided by a higher azimuthal subband. explicitly consider only the two low-energy pairs of sub-
This reduces the strength of the effect, but not the overalPands as shown in Fig. 6, which we label 1 and 2. The

frequency dependence, which is controlled by dispersion oHamiltonian in Eq.(42) can now be rotated into the band

the lowest azimuthal subband that is accessed to second drasis using the unitary rotations of E82) in the combina-

der inA,,. tion H® .= U3(q)HS, ;,U1(q), which gives
|
b im:evFAe‘(n*n)/Z ?ir{a(yl"' ¥2)/2] [ C_Of{a(h‘*‘ v2)/2] . 3
mmoc —icofa(y+y2)/2] sifa(yi+y,)/2]

Thus, the second-order coherence t¢amalogous to Eq.22) for the graphene shées

ie®vfA2 a?sin(y; +y,)e” (472!
722 [~Ea(q)~Ey(a) + 0—id][—2E1(a) +2w—i 6]

(p2)12=— (44)

The coherence factor appearing in E@4) can be re- larger carrier velocities and the longer carrier relaxation

expressed in terms of the Hamiltonian parameters times that are expected for the nanotubes. For carbon nano-
tubes this is particularly interesting since this third-order
SIN( vy + 7,) = q(A,—4y) (45) nonlinearity provides a methoql for curren_t i_njection Without
E>(Q)Eq(q)’ contacts. It has proven experimentally difficult to fabricate

) low-resistance electrical contacts with carbon nanotubes by
whereE(q) = vg“+m"A” and A is the lowest gap of the ., entional submicron lithographic methods.

semiconducting tube. Note that the effect vanishesAXer For an incident intensityS=10? KW/cn? the electric

=A,, i.e. between subbands of the same azimuthal symmer,q amplitudeE=8.5x 10° V/m~10F V/m. At an optical
try. The second-order coherence factor leads to the symmet'ﬁ’equencywz 10" s this corresponds to a vector potential
breaking third-order transition rate amplitude|A|~10° T—m (which is the value used in ob-

taining the results in Figs. 4 and.5Then we find that the
4ma’e%2 (A,—A)ALQE, g g J

(bs)zzz —— = Re(AsA LA, typical carrier_ injection rateln/dt~ 106_5;'1 per unit cell. For
h c’w 2 hot photoexcited carriers the relaxation rate is presumed to
6y 2id be dominated by phonon emission, for which we estimate a
xe 2 70 5 2(E(q) —hw)], (48)  carrier relaxation timer~1 ps so the steady state distribu-
which has exactly the same frequency dependence as tfi@n givesn~10"° carriers per tube unit celhote that the
result of Eq.(34). unit cell contains typically 40—60 carbon atoms around the

tube circumferenge Summing over the electron and hole
contributions to the photocurrent and over the two electronic
branches K andK’) we obtain an induced curreht= 0.4
Third-order phase coherent control of photocurrents haveA, or an effective current density~260 wA/ um?. This is
been studied and demonstrated for semicondudierg., 10— 107 larger than the induced density predicted for third
GaAs (Refs. 2, 3, and 13 and since the effects calculated order transitions between the valence and conduction bands
for carbon nanotubes are strongest for semiconducting tubes, GaAs*® The enhancement is due mainly to the relatively
it is appropriate to compare these effects. We find that théarge carrier velocity for the carbon nanotubes, and the larger
predicted effects are significantly stronger in nanotubes thaastimated carrier relaxation times. For conducting tubes this
for conventional semiconductors. This occurs because of thenhancement is partially offset by temallinterband matrix

VII. DISCUSSION
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elements between the lowest subbands of conducting tubeabove, the method provides a means for current injection
for a conducting zigzag tube we estimate the photocurrentithout electrical contacts. The absence of “low resistance”
densityJ~5 wA/ um? under the same assumptions, a valuecontacts on carbon nanotubes has often made it difficult to
which is comparable to that found for conventional €xplore low-energy transport phenomena in these
semiconductors® We note that even with these long carrier Systems:*~*°A particularly interesting experiment would be
relaxation times, one should be able to achieve a steady staf@ uUse the third-order nonlinearity to produce a steady state
distribution during a 100-ns incident pulse. For conductingseparation of charge in a carbon nanotube rope or mat. In this
nanotubes one has the additional difficulty of resolving thisstate the “driving force,” which produces a photocurrent via
signal over a background free carrier densTgyv 1075 pro- the third-order nonlinearity would be balanced by the inter-

duced by ordinary one-photon excitation between the Iowe§f'.al e_lectric fi_eld produced by. charge.separatﬁimqn open
subbandsfirst term in Eq.(20)]. Since this is a “nonpolar” circuit cond_ltl_on. The relaxation of th|s.charge distribution
contribution, i.e., it does not contribute to the photocurrent,after th? Qr|vmg fields are turned off directly measures the
the nonlinear contribution can be identified, in principle. conductivity along the pathways for charge motion in the

The angular distributions calculated for interband excita-SYSteém. Thus measurement of the transient relaxation after

tions in graphene sheets show a similar structure to the afU!Sed excitation would provide an interesting probe of the

gular dependence calculated for the third-order rate for tranmicrOSCOIOiC conductivity i_n thi§ structu_rall_y heterageneous
sitions from the heavy-hole band to the conduction band irYStem- Second, one can imagine applications that make use
GaAs!® In both cases the net induced current is polarized®! € enhancement of the effect on semiconducting tubes

along the direction of the exciting field, but the current dis-(and its suppression in conducting tupesisolate semicon-

tribution is peakedaway from the field direction. The high ducting anql conducting species in compositionally mi>§ed
symmetry of the graphene sheet provides an additional inte@Mples. Finally, momentum transfer from the photoexcited
esting degree of freedom, namely control of the direction ofarmers to mtgrca}ated lonic Species can be used n pf'“c'p'e
the injected current by controlling thelative polarizations to bias the diffusion of atomic or molecular species in the

of the incident fields, as displayed in Fig. 2. It would be veryCurrent carrying state. This e_ffect requires addition_ an
interesting to carry out experiments on grapliéher bulk asymmetry between the amplitudes for backscattering elec-

or thin films) to verify the predicted angular dependence.tmns and holes from the dopant species. This interesting ap-

Quantitative studies of the magnitude of the effect would be?lication has been discussed in Ref. 5 using a simple model

very useful as a probe of the scattering processes which coﬁc—’r the momentum transfer.

trol the dynamics of hot photoexcited carriers in these sys-

tems. We note that previous experiments on GaAs have ob- ACKNOWLEDGMENTS
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