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Coherent control of photocurrents in graphene and carbon nanotubes
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Coherent one-photon (2v) and two-photon (v) electronic excitations are studied for graphene sheets and
for carbon nanotubes using a long-wavelength theory for the low-energy electronic states. For graphene sheets
we find that a coherent superposition of these excitations produces a polar asymmetry in the momentum space
distribution of the excited carriers with an angular dependence that depends on the relative polarization and
phases of the incident fields. For semiconducting nanotubes we find a similar effect which depends on the
square of the semiconducting gap, and we calculate its frequency dependence. We find that the third-order
nonlinearity, which controls the direction of the photocurrent is robust for semiconducting tubes and vanishes
in the continuum theory for conducting tubes. We calculate corrections to these results arising from higher-
order crystal-field effects on the band structure and briefly discuss some applications of the theory.
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I. INTRODUCTION

The magnitude and direction of photocurrents in semic
ductors are ordinarily controlled using applied bias voltag
Interestingly the direction of a photocurrent in a semicond
tor can also be controlled without bias voltages throu
phase coherent control of the incident optical fields. In
typical experiment an initial and final state are simul
neously coupled using two coherent excitations: one pho
excitation at frequency 2v and two photon excitation at fre
quencyv. The coherent superposition of these two exci
tions can lead to a polar asymmetry in the momentum sp
distribution of the excited photocarriers and therefore to a
photocurrent. The effect has been discussed theoretica1,2

and observed experimentally in photoyield from atoms3 and
for photocurrents in semiconductors.4 Recently, two of us
have proposed that for carbon nanotubes this effect co
provide directional control of a photocurrent along the tu
axis5 and even suggests a novel method for biasing the
fusion of ionic species which intercalate within the nan
tubes.

In this paper, we study the excitations that lead to t
effect both for graphene sheets and for carbon nanotube
both these systems the low-energy electronic properties
evant to most solid state effects are determined by an in
esting feature of the band structure. The isolated graph
sheet has only an incipient Fermi surface; it is actually a z
gap semiconductor where the conduction and valence b
meet at precise points in momentum space. The carbon n
tube is a cylindrical tubule formed by wrapping a graphe
sheet and for metallic tubes the ‘‘zero gap’’ feature manife
itself in a peculiar doubling of the low energy electron
spectrum with ‘‘pairs’’ of forward and backward moving ex
citations at bothkF and2kF .6 In either case, the low-energ
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electronic spectra are described by a two-component D
Hamiltonian.6

In this paper, we develop the theory of phase coher
one- and two-photon excitation within this model. The app
cation to the graphene sheet turns out to be a useful p
gogical model, which is unusual for a semiconductor a
nicely illustrates the origin of phase coherent control of ph
tocurrents for a graphene derived system. For graphene
inappropriate to analyze the third-order nonlinearity by an
ogy with the third-order response in atomic systems, as
been done previously for semiconductors.4 Instead, we find
that the third-order response probes the rather unique ge
etry of the extended low-energy electronic eigenstates wh
occur within the graphene sheet. The application of
model to a carbon nanotube shows, interestingly, that
third-order nonlinearity is suppressed for excitations betw
the lowest subbands of any conducting nanotube and v
ishes completely for transitions between the lowest subba
of a conducting ‘‘armchair’’ tube, but it is nonzero and ro
bust for the gapped subbands of a semiconducting tube
fact, the effects we calculate are significantly stronger
semiconducting nanotubes than for a conventional semic
ductor. In principle this effect might be used to distingui
conducting and semiconducting tubes in a composition
mixed sample. Other possible applications of the idea will
discussed later in the paper.

In this paper, we briefly review the effective mass theo
for the graphene sheet in Sec. II. In Secs. III and IV,
derive the interaction terms in the long-wavelength theo
which couple the electrons to time varying electromagne
fields and present a calculation of the coherent third-or
nonlinear optical excitations using this model. Section V a
plies the results to study the third-order response of an
lated infinite graphene sheet. In Sec. VI, we use the theor
7669 ©2000 The American Physical Society
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study third-order effects for conducting and semiconduct
carbon nanotubes. A discussion and some applications o
results are presented in Sec. VII.

II. EFFECTIVE MASS THEORY

In this section, we briefly review the effective mass d
scription of the low-energy electronic states. The theory
developed for an ideal graphene sheet, a section of whic
shown in Fig. 1. The primitive cell of this structure contai
two atoms, labeledA andB in the figure. The lattice is un
changed after a translation by any combination of the t
primitive translations vectors

TW 15a~1,0!,

TW 25aS 1

2
,
A3

2 D , ~1!

where the bond lengthd5a/A3. We introduce a pair of
primitive translation vectors for the reciprocal latticeGW i such
that GW i•TW j52pd i j , yielding

GW 15
4p

A3a
SA3

2
,2

1

2D
GW 25

4p

A3a
~0,1! ~2!

which generate a triangular lattice in reciprocal space.
The critical pointsK(K8) are important to our discussion

and they occur at the corners of the Brillouin zone of t
reciprocal lattice at the positions

K5
1

3
~GW 112GW 2!5

4p

3a S 1

2
,
A3

2 D ,

K85
1

3
~2GW 11GW 2!5

4p

3a S 2
1

2
,
A3

2 D . ~3!

The ‘‘bonding’’ and ‘‘antibonding’’ p electron bands mee
precisely at theseK(K8) points in reciprocal space. Thi
band touching is required by symmetry for this system an

FIG. 1. Direct and reciprocal space structures of the graph
lattice. The primitive cell contains two sublattice sites labeledA and
B in the left panel. The right panel shows the first star of reciproc
lattice vectors and the first Brillouin zone. The long-waveleng
theory expands the electronic Hamiltonian for momenta near thK
andK8 points at the Brillouin-zone corners.
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is correctly described by the simplest model for electr
propagation within the graphene sheet which is a tig
binding model in which the hopping of an electron betwe
neighboring sites is set by a single energy,t. Thus, we have

hmn5^fmuHufn&5t ~nearest-neighbormn!

50 ~otherwise!. ~4!

Working in the sublattice basis and at crystal momentumkW
we have the Hamiltonian

H~kW !

5tS 0 11e2 ikW•TW 21e2 ikW•(TW 22TW 1)

11eikW•TW 21eikW•(TW 22TW 1) 0
D .

~5!

If we set kW5KW 1qW and expand the Hamiltonian forqa!1
we obtain the long-wavelength Hamiltonian

HK~qW !5
A3ta

2 S 0 qx1 iqy

qx2 iqy 0 D 5\vFsW * •qW , ~6!

wheresW are the 232 Pauli matrices. A similar expansio
near theK8 point yields

HK852\vFsW •qW . ~7!

Identifying each of the critical points with the indexa so that
a51 denotes theK point anda521 denotes theK8 point,
these Hamiltonians can be rotated into diagonal form w
the unitary operators

Ua~qW !5
1

A2
S 1 1

2ae2 iau ae2 iauD , ~8!

whereu5tan21(qy /qx). Thus,

Ua
†~qW !Ha~qW !Ua~qW !5\vFS 2uqu 0

0 uqu D , ~9!

so that Eqs.~6! and~7! describe pairs of bands that disper
linearly away from the criticalK and K8 points. Note also
that Ha(qW )5H2a* (2q) as expected. Equations~6! and ~7!
and the unitary rotations in Eq.~8! provide the appropriate
description of all the low energy electronic excitations r
quired for this problem.

III. GRAPHENE-FIELD INTERACTION HAMILTONIAN

In this section we collect several results we need to
scribe the coupling of electrons described by Eqs.~6! and~7!
to the electromagnetic potentials. For a particle of chargeQ

interacting with the electromagnetic vector potentialAW and
scalar potentialF the momentum and energy are shiftedpW

→pW 2QAW /c andE→E2QF.7 Thus, the interaction Hamil-
tonian that couples the Dirac particle to the time varyi
vector potential (Ax ,Ay) is

Ha,int52avFQ~Axsx2aAysy!/c. ~10!

e

l-
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This interaction operator can also be obtained by calcula
the velocity operator from the commutator of the positi
operator with the unperturbed Hamiltonian:

vW a5
i

\
@Ha ,rW# ~11!

and therefore

vW a5avF~sx ,2asy! ~12!

so thatHa,int52 jWa•AW /c.
It is useful to rotate the interaction Hamiltonian~10! into

the band basis using the unitary operators in Eq.~8!. To do
this we write q̂5(qx ,qy)/uqW u and compute Ha,int

b

5Ua
†(q̂)Ha,int(q̂)Ua(q̂) giving

Ha,int
b ~ q̂,AW !5

evF

c S 2q̂•AW 2 ia ẑ•~ q̂3AW !

ia ẑ•~ q̂3AW ! q̂•AW
D .

~13!

This demonstrates that the coupling between the Bloch e
trons and the vector potential depends on the angle betw

vW and AW and that the interband matrix elements@which are
the off-diagonal terms in Eq.~13!# vanish when the two are
collinear. Indeed,Ha(qW ) and Ha,int(q̂,AW ) commute along
these special lines in reciprocal space, so that interband
sitions are forbidden along this trajectory. This peculiar fe
ture can be traced to the absence of a mass term in th
fective Hamiltonians in Eqs.~6! and ~7! which would
ordinarily mix the plane-wave solutions to Eqs.~6! and ~7!
and thereby allow interband transitions by coupling with t
long-wavelength current operator. WhenvW and AW are not
collinear interband transitions are allowed and the transi
amplitudes are fixed by the mismatch in their orientations
the graphene plane. This has interesting consequence
coherent control of nonlinear optical processes in the na
tubes, as we show below.

IV. NONLINEAR OPTICAL EXCITATIONS

In this section, we present a calculation of the transit
probabilities for the third-order nonlinear optical excitatio
among the electronic states given by the models in Sec
and III. We introduce time varying fields of the form

AW ~rW,t !5AW ve2 ivt1 if11AW 2ve22ivt1 if21c.c. ~14!

and study the response of the system to third order in th
exciting fields. Asymmetries in the photocurrent are co
trolled by the coherent excitation of electrons from an init
state to a final state by one photon (2v) and by two one
photon (v) processes. The coherent mixing of these t
processes is studied by evolving the density matrix to th
order in the exciting fields and isolating the terms prop
tional to AvAvA22v .

It is convenient to study the time evolution of the o
particle density matrixr5^C†(rW)C(rW8)&. The Hamiltonian
for our system isHa1Ha,int and we work in the Heisenber
representation so that
g
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i

\
@Ha,int~ t !,r#, ~15!

where Ha is the free particle Hamiltonian andHa,int(t)
5eiH atHa,inte

2 iH at. In the band basis the density matrix
the initial state has the form

r05r~ t52`!5S 1 0

0 0D ~16!

since only the negative energy states of the Hamiltonians~6!
and ~7! are initially occupied.

We expand the density matrix order by order in the exc
ing fields

r~ t !5r01r11r21r31••• . ~17!

Integrating Eq.~17! to first order in the applied fields gives

r15
ievF

\c S 0 F1~ t !

2F1* ~ t ! 0 D , ~18!

where

F1~ t !5
a ẑ•~ q̂3AW v!e2 i (D1v)t1 if1

2D2v2 id

1
a ẑ•~ q̂3AW 2v!e2 i (D2v)t2 if1

2D1v2 id

1
a ẑ•~ q̂3AW 2v!e2 i (D12v)t1 if2

2D22v2 id

1
a ẑ•~ q̂3AW 22v!e2 i (D22v)t2 if2

2D12v2 id
, ~19!

whereD52vFq andd is a positive infinitesimal.
The second-order termsr2 include the lowest-order

changes to the occupation probabilities which can be indu
with excitation by thev or the 2v fields

~ ṙ2!2252~ ṙ2!115
2pe2vF

2

\2c2
@ ua ẑ•~ q̂3AW v!u2d~D2v!

1ua ẑ•~ q̂3AW 2v!u2d~D22v!# ~20!

as well as oscillating nonlinear off-diagonal coherence ter

~r2!1252
ie2vF

2

\2c2
F2~ t !. ~21!

Anticipating the situation 2v'D, the most important contri-
bution toF2(t) has the form

F2~ t !5
~ q̂•AW 2v!~a ẑ•q̂3AW 2v!e2 i (D22v)t22if1

~2D1v2 id!~2D12v2 id!
. ~22!

The second-order coherence term in Eq.~22! leads to a tran-
sition rate, which is third order in the applied fields and is t
source of the polar asymmetry of the photocurrent,
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FIG. 2. Angular distributions of the transition rates given by Eq.~23!. In each panel theAW v is polarized along the horizontal direction~the

direction of the arrow in each plot! andDu is the angle between theAW 2v andAW v fields. The polar plot gives the transition rate as a funct

of the angle of the Bloch wave vectorq̂ with respect to the direction ofAW v . These angular distributions are superimposed on the ang

distribution for the direct transition rate, which is given by the second term in Eq.~20!. The solid curves correspond to (ṙ3)22.0, dashed

curves to (ṙ3)22,0 when cos(f222f1).0.
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~ ṙ3!225
8pe3vF

3

D\3c3
Re@~a ẑ•q̂3AW 2v!~ q̂•AW 2v!

3~a ẑ•q̂3AW 2v!ei (f222f1)#d~D22v!. ~23!

Equation~23! contains a factor of two from the sum over th
~physical! spins. Equation~23! presents the main result o
the paper. It shows that the transition rate depends on
polarization and phases of both exciting fields and the Bl
wave vectorqW . We will explore the consequences of th
geometric structure of this result for the graphene sheet
for carbon nanotubes in the following two sections. For
moment, we note that the result is odd in the direction of
Bloch wave vectorq̂ and even in the critical point indexa ~it
depends ona2) and therefore the symmetry breaking no
linearity is nonzero after integration over the full Brilloui
zone.

V. APPLICATION TO GRAPHENE

In this section, we apply the formalism developed in S
III to study the coherent optical control of photocurrents
a single-graphene sheet. The model nicely illustrates the
lection rules which apply in this geometry, and the resu
can be extended to analyze the more complex situation
the nanotube, which will be presented in Sec. VI.

We note that both Eqs.~20! and ~23! contain terms that
describe transitions from the valence to the conduction b
at the frequency 2v5D. Equation~20! is the ordinary linear
absorption in the material. Interestingly, we see that the
gular distribution of the excited photocarriers is not isotro
but rather follows a sin2 f dependence with respect to th
polarization of the exciting radiation. Nevertheless, this
gular distribution has even parity and thus does not prod
a net current. On the other hand, Eq.~23! gives an angular
distribution that breaks the inversion symmetry of t
graphene sheet. The symmetry breaking is actually imp
in the coherent superposition of the exciting fields. We w
estimate the prefactors to compare the relative strength
these terms for accessible laboratory fields later in the pa
for the moment we note that the nonlinear terms in Eq.~23!
typically contribute'1023 of the total transition rate, and
thus the induced anisotropy while nonzero~and we believe
measurable! is a subtle effect.

The angular distribution in Eq.~23! is controlled by the
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relative polarizations and phases of the incidentAW v andAW 2v

fields. Figure 2 displays polar plots of the angular distrib
tions for the situation where the amplitudes are in phase@i.e.,
AW v andAW 2v in Eq. ~14! are presumed to be real# for various
incident polarizations. Note that the underlying electron
dispersion relations are completely isotropic in the lineariz
theory, and thus only the relative polarization of the tw
exciting fields is relevant for the interference pattern. In
casesAW v is taken to be polarized along the horizontal dire
tion shown by the arrow in the plots. In each plot, we o
serve a node in the current distribution along this directi
This follows from the symmetry ofHa,int

b in Eq. ~13!, which

shows that interband coupling is prohibited forq̂ parallel to
AW . Nonetheless, the situation for collinearv and 2v excita-
tion clearly shows the asymmetry between the ‘‘forward
and ‘‘backward’’ distribution of the photocurrent. The situ
tion is more interesting when the exciting fields are nonc
linear. We observe that the angular distribution develop
‘‘three lobe’’ structure. Ultimately, when the exciting field
area mutually orthogonal, we recover the ‘‘two lobe’’ patte
with the angular distribution rotated byp/2 with respect to
the polarization of the incidentv field. It is useful to quan-
tify the anisotropy of the distribution by calculating the a
erage polarization of the net photocurrent^cosf& and^sinf&
averaged over this distribution. One finds

^cosf&5
1

2
cosu

^sinf&52
1

2
sinu ~24!

so that when the 2v field is tipped by an angleu with respect
to thev field, the photocurrent is oriented in the directio
2u. Finally, the ‘‘sign’’ of the effect is determined by th
relative phases of the two exciting fields. Note that the ph
delaysf1 andf2 in the exciting fields of Eq.~14! modulate
the transitions rates4 in Eq. ~23! in the combination

~ ṙ38!22→~ ṙ3!22cos~f222f1!. ~25!

This does not change the qualitative features of the ang
distribution but it can modify both its magnitude and i
overall sign.
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Thus the angular distribution in the collinear caseDu50 can
be reversed by advancing the phase of thev fields byp/2.

VI. APPLICATION TO NANOTUBES

A. Low-Energy Theory for Semiconducting Tubes

In this section, we apply the formalism of Sec. III to stu
phase coherent control of a photocurrent on a carbon n
tube. The essential complication is that the wrapped struc
of the nanotube quantizes the allowed crystal momenta
that the transition rate automatically contain an intrinsic
isotropy. Nevertheless, the formalism developed in Sec.
can be extended to include this situation.

We first define the geometry for the single-wall nanotu
The nanotube is a cylinder formed by wrapping a graph
sheet and the wrapping can be defined by the graphene
perlattice translation vector around the tube waist. We ad
the primitive vectors of Eq.~1! as a basis and represent t
superlattice translationTW MN as

TW MN5MTW 11NTW 25S M1
N

2
,
A3N

2 D a. ~26!

It is useful to define two unit vectors defining the longitud
nal and azimuthal directions within the graphene plane

êl5~cosuc ,sinuc!

êa5~2sinuc ,cosuc!, ~27!

where uc5cos21(M1N/2)/(AM21N21MN) is the chiral
angle of the tube. The wrapping of the tube quantizes
allowed momenta along the azimuthal directionkW•êa

52pn/(aAM21N21MN) while the electrons obey fre
particle boundary conditions along the tube direction and
longitudinal componentkW•êl can take any value.8–10 Thus,
the loci of allowed momenta are ‘‘lines’’ in reciprocal spac
These lines need not intersect the criticalK and K8 points,
which are used as a reference for the long-wavelen
theory. To determine the mismatch between the allow
crystal momenta and theK andK8 point wave functions we
resolve the Bloch wave vector atK andK8 into its longitu-
dinal and azimuthal components. We find

Ka5
4p

3a S a

2
,
A3

2 D ~28!

and

Ka•êa5
2p

3a F 2aM1N~31a!

2AM21N21MN
G , ~29!

which lies along the locus of allowed wave vectors wh
2aM1(31a)N56n. One third of the (M ,N) tubes satisfy
this condition, and for the remaining two thirds of the tub
the K(K8) momenta are mismatched to the kinematica
allowed momenta by a minimum amount

Da5
2p

3aAM21N21MN
~21!mod(a(N–M ),3). ~30!
o-
re
so
-
II

.
e

su-
pt

e

e

.

th
d

s

Representing the ‘‘reduced’’ Bloch wave vector with th
complex numberq̃5qx1 iqy5qeiuc and the momentum
mismatch byD̃a5 iDeiuc after a rotation of the coordinat
system by the chiral angleuc ~so that thex axis runs parallel
to the tube length! the Hamiltonians in Eqs.~6! and ~7! can
be written

Ha~q!5\vFS 0 aq1 iDa

aq2 iDa 0 D . ~31!

Note that in Eq.~31! Ha(q)5H2a* (2q). The spectrum is
now E(q)56Aq21D2 and the Hamiltonian is diagonalize
with the unitary transformation

Ua~q!5
1

A2
S 1 1

2ae2 iag ae2 iagD , ~32!

whereg5tan21(D/q). This is the rotation identified in Eq
~8! for the unfolded graphene sheet withD playing the role
of the y component of the momentum. With this identific
tion the interaction Hamiltonian for the nanotube analogo
to Eq. ~13! in the band basis is

Ha,int
b ~q,A!5

evFA

c

1

Aq21D2 S 2q iaD

2 iaD q D . ~33!

Note that the off-diagonal terms which describe the am
tudes for interband transitions depend explicitly on the s
of the semiconducting backscattering gapD and vanish for
the lowest subbands of a conducting nanotube as show
Fig. 3.

Thus, when the exciting fields are collinear and direc
along the tube direction the third-order transition rate is

FIG. 3. Optical excitation between lowest subbands of a c
ducting tube ~left panel! are forbidden in the long-wavelengt
theory. They are allowed for a semiconducting tube~or for the
gapped subbands of a conducting tube! as shown on the right.D
denotes the crystal momentum mismatch between the valence
conduction band states and theK(K8) points of the graphene shee
The right-hand panel illustrates one- and two-photon excitatio
which interfere to produce a polar asymmetry in the photocurre
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~ ṙ3!225
4pa2e3vF

6

\2c3v4
D2q Re~A2vA2vA2vei (f222f1)!

3d@2E~q!22\v#. ~34!

Equation ~34! is the origin of the asymmetry discussed
Ref. 5. We note that the result depends on the square o
magnitude of the gapD and it vanishes for transitions be
tween the lowest subbands of a conducting tube. The resu
odd in the reduced momentumq which produces an asym
metry between forward and backward moving photocarrie
The third-order transition rate is very small for high excitin
frequency since the high-energy electrons are very wea
backscattered through the mass term in Eq.~31! and behave
essentially as free particles. These properties are display
Fig. 4 which shows the third-order transition rate betwe
two bands of a semiconducting tube as a function of
exciting frequency. It is interesting to note that the expec
divergence in the one dimensional density of states at thr
old is exactly canceled by the momentum prefactorq in Eq.
~34! and thus the spectrum shows only a steplike singula
at the threshold. Thus, the transition probability for righ
and left-moving photocarriers jumps discontinuously acr
the critical point atq50. Note however that the states ne
the band gap have no group velocity and cannot contribut
the photocurrent so the velocity weighted transition r
~which is more relevant to this application! goes to zero at
threshold. This is shown by the dashed curve in Fig. 4. T
results in Fig. 4 show the nonlinear injection rate for a p
fect defect free semiconducting tube. A slowly varying im
purity potential~long range disorder in the notation of Re
12! can produce an additional channel for backscattering
will therefore further suppress the group velocity for ele
tronic states near the band edges. In the presence of diso
we therefore expect an additional rounding of the curr
injection rate, similar to that shown as the dashed curve
Fig. 4. The range and strength of this suppression will
pend sensitively on the details of the long-range impu
potential. The results of Fig. 4 are insensitive to this ad
tional backscattering deeper into the particle-hole continu

FIG. 4. Frequency dependence of the third-order transition
leading to anisotropy of the photocurrent. The solid curve gives
transition rate of Eq.~30! as a function of the exciting frequenc
\v. To display the spectra we have taken a semiconducting
\vFD5800 meV and normalized the incident intensity so th
uAu51029 T-m at all frequencies. The dashed curve is the transit
rate weighted by the final state velocity. Band-edge states
strongly scattered by the mass term and do not contribute e
tively to the photocurrent.
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B. Crystal-field effects for conducting tubes

Equation~34! gives the third-order nonlinear response
the long-wavelength limit where we can linearize the ele
tronic bands around the criticalK(K8) points. Corrections to
this result can be obtained in an expansion inqa and physi-
cally arise from crystal-field~‘‘trigonal warping’’! effects in
the underlying band structure. The most significant such c
rections occur for conducting tubes. Equation~34! gives a
vanishing transition rate for excitations between the low
bands of a conducting tube and trigonal warping of the ba
structure of the graphene sheet provides a mechanism
‘‘turn on’’ these transitions even for conducting tubes. Th
a third-order nonlinear response is symmetry allowed for
lowest subbands of a conducting nanotube, though it stri
vanishes in the long-wavelength limit we have discussed
far.

To investigate the trigonal warping effects we rederive
interaction Hamiltonian without adopting the effective ma
representation. To do this we note that in the presence
vector potentialAW the Hamiltonian~5! is perturbed through
the Peierls substitutionkW→kW2(Q/c)AW . Therefore, we can
calculate the current operator usingj m52]H/]Am
5(Q/c)]H/]km . In the site representation the Hamiltonia
has only off-diagonal elements, so we can write

Hint52
e

c
AW •S 0 ¹kt~kW !

¹kt* ~kW ! 0
D . ~35!

We also note that the Hamiltonian is diagonalized with t
unitary transformation:

U~kW !5
1

A2 S 1 1

2
t* ~kW !

ut~kW !u

t* ~kW !

ut~kW !u
D , ~36!

which is the discrete lattice analog of the continuum resul
Eq. ~8!. Thus, we can rotate the interaction Hamiltonian in
the band basis according toU†(kW )Hint(kW )U(kW ), which gives

Hint
b ~kW !52

e

c

Am

ut~k!u S 2Re~ t* ]km
t ! i Im ~ t* ]km

t !

2 i Im ~ t]km
t* ! Re~ t* ]km

t ! D .

~37!

Explicit evaluation of the matrix elements in Eq.~36! for a
general chiral nanotube is complicated.In general, one may
have interband matrix elements between lowest subband
a conducting tube@which are the off-diagonal terms in Eq
~37!#; albeit with greatly reduced magnitudes—the scale
these matrix elements is typically'1022 the scale for the
matrix elements in Eq.~31!, which are produced by the mas
term in the linearized theory for a semiconducting tube.
important exception to this rule for conducting tubes occ
for the armchair (M ,M ) tubes. Then one finds thatt(k)
5e2p i /3@112 cos(kxa)# for propagation in the lowest sub
bands of the tube, and we have

@ t* ~kx!]kt~kx!#/ut~kx!u5ta sgn@112 cos~kxa!#sin~kxa!.
~38!
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Thus, near the critical points the diagonal elements of
velocity operator are6vF and the off-diagonal componen
vanisheverywhere. Note that this occurs because of a tu
symmetry; the armchair tube retains a mirror plane, wh
contains the tube axis so that the two lowest subbands o
conducting tube can be indexed as even or odd under re
tion through this mirror plane. The vector potential along t
tube axis is even under the mirror reflection and can
couple even and odd subbands. On the other hand, f
zigzag tube one hast(k)5eikya/A3(11e2 iA3kya/2). This van-
ishes forky52p/A3a which corresponds to a ‘‘face’’ of the
Brillouin zone in Fig. 1. Thus, one finds for the conductin
zigzag tube

~ t* ]kt !/utu

5

ta F i

A3
cos2~A3ka/4!G2FA3i

2
cos~A3ka/4!eA3ikya/4G

ucos~A3ka/4!u
.

~39!

Therefore, near the crossing pointky5(2p/A3a)1q one
finds

~ t* ]kt !/utu'
A3ta

2 S 12 i
qa

2A3
1••• D . ~40!

Thus, the diagonal matrix elements of the velocity opera
@the real part of Eq.~39!# are constant@vF„11O(qa)…2#
while the off-diagonal elements~the imaginary part! vanish
proportional toqa near the Fermi points. This implies tha
the product of the matrix elements in the third-order tran
tion rate vanish as (qa)2 for the conducting zigzag tube. Thi
changes both the magnitude and the frequency depend
of the third-order transition rate. We obtain

FIG. 5. Frequency dependence of the third-order transition
involving the lowest subbands of a conducting zigzag tube, wh
produce an anisotropy of the photocurrent. The dashed curve u
linear dispersion relation for the electronic states with the ma
elements computed using the lattice theory of Eq.~37!. The normal-
ization of the incident fields is the same as for the results of Fig
so that the rates can be directly compared~note the vertical scale
change!. These interband excitations are symmetry forbidden in
Dirac theory but become weakly allowed in the presence of crys
field effects on the low-energy electronic states. For a conduc
tubes third-order transitions between the gapped subbands prov
much stronger nonlinear third-order response, as shown in Fig
e

h
he
c-

e
t
a

r

i-

nce

~ ṙ3!225
pe3vF

12\2c3
a2v sgn~q! Re~A2vA2vA2v

3ei (f222f1)!d@2~ ut~q!u2\v!#. ~41!

The result is plotted in Fig. 5 using the same normalizat
as in Fig. 4 for comparison~note the scale change!. One finds
that the transition rate vanishes linearly in frequency, and
suppressed by'1022 with respect to the interband transitio
rate for a semiconducting tube. This reflects the fact tha
low-energy the effects of trigonal warping are relative
small compared to the backscattering from the mass term
the low-energy Hamiltonian for a semiconducting tube. W
note that calculations of the frequency dependence of
resonant Raman cross section for conducting tubes11 show a
strong enhancement of the cross section near the first in
band threshold, also demonstrating the suppression of in
band transition matrix elements between the lowest cond
ing subbands in these structures.

Figure 5 presentsonly the results for excitations couplin
the lowest subbands of a conducting tube. Transition ra
between gapped subbands are described by Eq.~34! so that
the transition rate displayed in Fig. 4 should be superpo
on these results. This situation calculated for a zigzag t
illustrates the generic behavior for a general (M ,N) tube if
one wishes to calculate beyond the linearized theory. Ana
gous results for arbitrary chiral tubes can be obtained
direct evaluation of the matrix elements in Eq.~37!.

C. Noncollinear fields

This treatment can be extended to include the situa
where the exciting fields are not collinear. Interestingly, t
does not change the qualitative frequency dependence sh
in Fig. 4, although the prefactor is altered for noncolline
fields.

We will consider only the case where the exciting fiel
are orthogonal, since any incident field can be resolved
its longitudinal~along the tube! and transverse~perpendicu-
lar to the tube! components. We observe that for a field pe
pendicular to the tube axis we have allowed interband tr
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FIG. 6. Interfering excitations when thev field is polarized
perpendicular to the tube and the 2v field is polarized along the
tube direction. The 2v field excites transitions between subban
with the same azimuthal quantum numbers. Thev field excites
transitions withdm561.
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sitions only when the azimuthal quantum numberm changes
by 61 since the vector potentialA ‘‘seen’’ in the tangent
plane of the tube isAW •f̂5A cosf wheref̂ is a unit vector
that circulates counterclockwise around the tube waist.
the graphene sheet this is equivalent to introducing a s
tially varying vector potential with wavevector 1/R whereR
is the tube radius. Thus, the third-order nonlinear process
are seeking is symmetry forbidden ifAW 2v has a transverse
polarization~the lowest subbands have the same azimu
quantum numbers.! However, it is possible to have the situ
ation shown in Fig. 6, whereAW v is perpendicular to the tub
axis, andAW 2v is polarized along the tube direction. Here t
virtual intermediate state for the two-photon process is p
vided by a higher azimuthal subband.

This reduces the strength of the effect, but not the ove
frequency dependence, which is controlled by dispersion
the lowest azimuthal subband that is accessed to secon
der in AW v .
m
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We modify the interaction Hamiltonian Eq.~33! for the
situation where the exciting radiation is polarized perpe
dicular to the tube direction. In the ‘‘site’’ basis one find
that the interaction Hamiltonian for this polarization is

Ha,int
s 5

evFA

c S 0 2 i

i 0 D , ~42!

whereA5A(y)5A0 cos(y/R). They dependence implies tha
this interaction couples subbands with a difference in a
muthal quantum numbersm such thatdm561 and we will
explicitly consider only the two low-energy pairs of su
bands as shown in Fig. 6, which we label 1 and 2. T
Hamiltonian in Eq.~42! can now be rotated into the ban
basis using the unitary rotations of Eq.~32! in the combina-
tion Ha,int

b 5U2
†(q)Ha,int

s U1(q), which gives
Ha,int
b 5

evFA

c
ei (g22g1)/2S sin@a~g11g2!/2# i cos@a~g11g2!/2#

2 i cos@a~g11g2!/2# sin@a~g11g2!/2#
D . ~43!

Thus, the second-order coherence term@analogous to Eq.~22! for the graphene sheet# is

~r2!1252
ie2vF

2Av
2

\2c2

a2 sin~g11g2!e2 i (D22v)t

@2E2~q!2E1~q!1v2 id#@22E1~q!12v2 id#
. ~44!
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The coherence factor appearing in Eq.~44! can be re-
expressed in terms of the Hamiltonian parameters

sin~g11g2!5
q~D22D1!

E2~q!E1~q!
, ~45!

whereEm(q)5Aq21m2D2 and D is the lowest gap of the
semiconducting tube. Note that the effect vanishes forD1
5D2, i.e. between subbands of the same azimuthal sym
try. The second-order coherence factor leads to the symm
breaking third-order transition rate

~ ṙ3!225
4pa2e3vF

3

\3c3v4

~D22D1!D1qE1

E2
Re~A2vA2vA2v

3eif222if1!d@2~E~q!2\v!#, ~46!

which has exactly the same frequency dependence as
result of Eq.~34!.

VII. DISCUSSION

Third-order phase coherent control of photocurrents h
been studied and demonstrated for semiconductors@e.g.,
GaAs ~Refs. 2, 3, and 13!# and since the effects calculate
for carbon nanotubes are strongest for semiconducting tu
it is appropriate to compare these effects. We find that
predicted effects are significantly stronger in nanotubes t
for conventional semiconductors. This occurs because of
e-
try

the

e

es,
e
n

he

larger carrier velocities and the longer carrier relaxat
times that are expected for the nanotubes. For carbon n
tubes this is particularly interesting since this third-ord
nonlinearity provides a method for current injection witho
contacts. It has proven experimentally difficult to fabrica
low-resistance electrical contacts with carbon nanotubes
conventional submicron lithographic methods.

For an incident intensityS5102 kW/cm2 the electric
field amplitudeE58.53 105 V/m'106 V/m. At an optical
frequencyv51015 s21 this corresponds to a vector potenti
amplitude uAu'109 T2m ~which is the value used in ob
taining the results in Figs. 4 and 5!. Then we find that the
typical carrier injection ratedn/dt'106 s-1 per unit cell. For
hot photoexcited carriers the relaxation rate is presume
be dominated by phonon emission, for which we estimat
carrier relaxation timet'1 ps so the steady state distrib
tion givesn̄'1026 carriers per tube unit cell~note that the
unit cell contains typically 40–60 carbon atoms around
tube circumference!. Summing over the electron and ho
contributions to the photocurrent and over the two electro
branches (K and K8) we obtain an induced currentI' 0.4
nA, or an effective current densityJ'260 mA/mm2. This is
102102 larger than the induced density predicted for th
order transitions between the valence and conduction ba
in GaAs.13 The enhancement is due mainly to the relative
large carrier velocity for the carbon nanotubes, and the lar
estimated carrier relaxation times. For conducting tubes
enhancement is partially offset by thesmall interband matrix
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elements between the lowest subbands of conducting tu
for a conducting zigzag tube we estimate the photocur
densityJ'5 mA/mm2 under the same assumptions, a va
which is comparable to that found for convention
semiconductors.13 We note that even with these long carri
relaxation times, one should be able to achieve a steady
distribution during a 100-ns incident pulse. For conduct
nanotubes one has the additional difficulty of resolving t
signal over a background free carrier densityn̄b'1025 pro-
duced by ordinary one-photon excitation between the low
subbands@first term in Eq.~20!#. Since this is a ‘‘nonpolar’’
contribution, i.e., it does not contribute to the photocurre
the nonlinear contribution can be identified, in principle.

The angular distributions calculated for interband exc
tions in graphene sheets show a similar structure to the
gular dependence calculated for the third-order rate for tr
sitions from the heavy-hole band to the conduction band
GaAs.13 In both cases the net induced current is polariz
along the direction of the exciting field, but the current d
tribution is peakedaway from the field direction. The high
symmetry of the graphene sheet provides an additional in
esting degree of freedom, namely control of the direction
the injected current by controlling therelative polarizations
of the incident fields, as displayed in Fig. 2. It would be ve
interesting to carry out experiments on graphite~either bulk
or thin films! to verify the predicted angular dependenc
Quantitative studies of the magnitude of the effect would
very useful as a probe of the scattering processes which
trol the dynamics of hot photoexcited carriers in these s
tems. We note that previous experiments on GaAs have
served the third-order nonlinearity, but with an amplitu
that is an order of magnitude smaller than predicted theo
cally.

For carbon nanotubes, one can anticipate at least t
interesting applications of this phenomenon. First, as no
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above, the method provides a means for current injec
without electrical contacts. The absence of ‘‘low resistanc
contacts on carbon nanotubes has often made it difficul
explore low-energy transport phenomena in the
systems.14–16A particularly interesting experiment would b
to use the third-order nonlinearity to produce a steady s
separation of charge in a carbon nanotube rope or mat. In
state the ‘‘driving force,’’ which produces a photocurrent v
the third-order nonlinearity would be balanced by the int
nal electric field produced by charge separation~in an open
circuit condition!. The relaxation of this charge distributio
after the driving fields are turned off directly measures
conductivity along the pathways for charge motion in th
system. Thus measurement of the transient relaxation a
pulsed excitation would provide an interesting probe of
microscopic conductivity in this structurally heterogeneo
system. Second, one can imagine applications that make
of the enhancement of the effect on semiconducting tu
~and its suppression in conducting tubes! to isolate semicon-
ducting and conducting species in compositionally mix
samples. Finally, momentum transfer from the photoexci
carriers to intercalated ionic species can be used in princ
to bias the diffusion of atomic or molecular species in t
current carrying state. This effect requiresin addition an
asymmetry between the amplitudes for backscattering e
trons and holes from the dopant species. This interesting
plication has been discussed in Ref. 5 using a simple mo
for the momentum transfer.
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