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Quantum-field coherent control: Preparation of broken-symmetry entangled states
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We show that entangled radiation-matter states with broken symmetries can be prepared by using nonclas-
sical light in the coherent control techniques. We demonstrate the method by realizing the entanglement in
degenerate continuum electronic momentum states of opposite directionality and discrete states of opposite
handedness in chiral molecules. When the material system is excited simultaneously by classical light and
quantum light in a state with several semiclassical phases, the interference conditions guide the system to such

entangled radiation-matter states.
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In recent years, intriguing entangled states of light or mat-
ter, such as the Greenberger-Horne-Zeilinger (GHZ) or the W
states, have been suggested and experimentally prepared
[1-3]. Hybrid radiation-matter entangled states in atoms
[4-6] and states in continua [7] have also been investigated.
These fascinating studies have shown among other things
that the nonclassicality and entanglement of quantized light
and matter fields can be converted one to another. Thus, light
in squeezed states can prepare entangled atomic states [8]
and entangled spin states [9] can give rise to spin squeezed
states [10].

It could also be very interesting to consider preparation of
entangled quantum states by optical interference techniques,
known for their unique selection properties. Coherent control
(CC) [11] methodologies can selectively populate degenerate
quantum states in material systems, by relying on phase-
sensitive quantum interference processes, induced by several
classical light fields. In recent experiments [12], exceptional
spectroscopic results have been obtained when CC tech-
niques were combined with the use of entangled light [13].

Here, we introduce a quantum interference approach,
termed “Quantum-field coherent control” (QCC), which is
complementary to this new avenue. It could be used to pre-
pare entangled radiation-matter states from degenerate
broken-symmetry material states. Such discrete or continuous
degenerate states cannot be excited individually by single
optical transitions. However, since these states lack sharp
parities, they could be simultaneously excited by both one-
photon and two-photon processes from the same initial state,
and addressed individually according to the relative phase of
the two light fields used [14-16]. In the QCC approach, one
of the two light fields is assumed to be quantized and pre-
pared in a state with several semiclassical phases [13]. Then,
a radiation-matter entangled state can be created, where each
of its components contains one of the broken-symmetry ma-
terial states associated with a nonclassical light state of one
of the effective phases. Moreover, as in the classical case, the
final state can be controlled by the relative phase of the clas-
sical and nonclassical light sources.

We present the QCC approach first on systems with con-
tinuous broken-symmetry states excited by two weak light
fields. In the classical (1+2) CC [14-16], which we quantize
below, a (one-dimensional) semiconductor of any crystal
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symmetry is simultaneously irradiated by two classical light
fields, described by the Hamiltonian in the velocity gauge
(H;<A-p) [16]. The first, with the vector potential
Ale‘iwlt‘i"’l, induces one-photon transitions, while the sec-
ond, of the form A,e 2"='%2_ induces two-photon transitions.
Since w;=2w,, both transitions resonantly link the same ini-
tial continuous |tkv> states, of a filled valence band, to the
|+k,) states, of an empty conduction band (in vertical tran-
sitions, k,.=k,).

In the velocity gauge, the population generated in the con-
duction band is proportional to the square of the sum of the
one-photon and two-photon transition amplitudes, given in
the rotating wave approximation (RWA) as [14-16] [p;;(k.)
:<ki|p|kj> with i,j=c,v],

2

P(k) o |Aipe,e™® + A3 2 %6‘2"”2
i=c,v He T BT 2
o« A + B sgn(k,)cos(p, —2,). (1)

Since E.—E,=2hw,, the two-photon matrix element is pro-
portional  to  [16]  —p.Pe/ s+ PPy hwr=(py,
—Dee)Peu! hw,. Therefore, the product of the one-photon and
two-photon matrix elements in the square from Eq. (1) is
%Pl (Pec=Pyy)- The intraband p,. and p,, elements, pro-
portional to the velocities of carriers, change sign when k.
changes sign, i.e. p;(k.)=—p;(-k.), which leads to the
sgn(k,) factor in Eq. (1). Thus, the injection rates into the
|+k,) states can be different, depending on the ¢, -2, rela-
tive phase of the two fields, which results in the generation
of a dc electric current, j.o [k P(k.)dk.#0 (j,#j.), in the
conduction (valence) band of the semiconductor. In this way,
by exciting the states of one directionality more, we can
dynamically break the system symmetry.

In the (1+2) QCC scenario, schematically shown in Fig.
1, we quantize one of the light fields used and prepare it in a
nonclassical state with several effective phases. We could
use the experimentally feasible squeezed states [17]: in a
squeezed vacuum one can assign two effective “phases” mu-
tually shifted by 7 to two time regions with large quantum
fluctuations [13]. Here, we assume that the one-photon pro-
cess is driven by the “cat (or macroscopic quantum superpo-
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FIG. 1. (Color online) Scheme of the creation of entangled
broken-symmetry radiation-matter states in a semiconductor by the
QCC method. The states are generated due to quantum-classical
interferences of the one-photon light source, using the nonclassical
|C)=|a)+|-a) cat state, with two effective phases, and the classical
two-photon source.

sition) state” |C)=|a)+|-a) with similar properties [18],
which in principle could also be realized experimentally
[19]. It is composed of two |+ a) coherent states, whose ef-
fective phases are shifted by .

The probability P(k.,a') of populating the material
eigenstate |k.) with the light field being in the coherent state
|a’) can be evaluated from Eq. (1), where in RWA the one-
photon term is changed as [13],

Apeye® — <a'|(2 Peoln = 1) +h.c.)|<2>. @)

Choosing, for simplicity, a= a' to be real, and using the fact
[20] that (n|a’) < (a’)"/\n, we can write it as

P(k,,a') < A" + B" sgn(k,)sgn(a’)cos(2¢,). (3)

Here, the sgn(a’) term derives from the fact that

(o' |n+1Xn|C)=[1+ (= 1D)")(a") &' /\Nn(n £ 1).

Hence, only even n (odd n+1) terms are nonzero, which all
preserve the sign of «'.

The apparently small difference between Eq. (1) and Eq.
(3), i.e. the correlation of the signs in &’ and k., has far
reaching consequences. By setting the fields such that A’
=B’ and ¢,=0, we obtain that P(k,,a’')=0 if sgn(a’)
# sgn(k,). Therefore, by starting from the initial state of the
occupied valence band, p20=2kvlkv)(kv, we can prepare
entangled states that associate the left and right momenta
|-k.,) and |k.,) states (currents) with the |-) and |a) co-
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herent states, respectively. These states can be described by
the density operator,

pi =~ 2 Ckl-|ki>|_ a)(- al(k] + 2 Cki|ki>|a><a|<ki

<0 k>0

>

with i=c(v) denoting the conduction (valence) band Bloch
electron (hole) states. Since the (1+2) CC can also inject
spin currents in semiconductors [21], the QCC could simi-
larly prepare entangled spin currents.

In an analogous way, we can consider hybrid quantum-
classical-field photoemission of electrons from discrete
atomic or molecular states into a continuum of free-electron
momentum states |+k). If the one-photon light source is in
the |C) cat (or other) nonclassical state, we can prepare the
|@)|k)+|-a)|-k) radiation-matter entangled states. Their
preparation could be tested by measuring the light phase and
correlating its value with the direction of the outgoing pho-
toemitted electrons.

The presented example demonstrates the QCC method in
the weak-field limit, where broken-symmetry material states
in a continuum are entangled with nonclassical radiation
states. We now extend the approach to the strong-field limit,
where we apply the QCC on discrete broken-symmetry ma-
terial states. We apply adiabatic passage methods (AP)
[22,23], which can completely transfer populations, and are
able to prepare radiative Fock states [24] and entangled ma-
terial states [25]. The strong-field QCC is based on the com-
bined CC and AP methods [28], which can selectively and
completely populate degenerate discrete states of opposite
symmetries.

Here, we demonstrate the strong-field QCC in chiral mol-
ecules of the left (L) or right (D) handedness (L or D “enan-
tiomers”) [26,27]. We can take advantage of the fact that
small chiral molecules, such as D,S, [28], can be prepared in
their individual broken-symmetry ro-vibronic states and
transferred to most of the other states by one-photon pro-
cesses. We just consider one enantiomer, where three of its
discrete levels are coupled by light, as shown in Fig. 2 (left).
As in Fig. 1, this scheme relies on phase-sensitive interfer-
ences between one-photon and two-photon excitation pro-
cesses [28].

In the excitation, we first resonantly couple the |2) and |3)
levels by a “dump” pulse of the Rabi frequency (1,3, from a
nonclassical light field. This is followed by two “pump”
pulses, starting simultaneously but ending differently, of
Rabi frequencies ), and ()3, from two classical light fields.
They couple the (initially populated) |1) state to the (empty)
|2) and |3) states, respectively. Here, for every pair of i,j
levels, ; ()=, ;& (t)/h, with w,; being the transition-
dipole elements and &; /(7) the related optical fields. Since we
excite just one enantiomer, we cannot take advantage of the
fact that the signs of w;; depend on the chirality, as in Ref.
[28].

If all the three used pulsed fields were classical, the initial
population would follow first an adiabatic null state and then
diabatically cross over to one of the two remaining adiabatic
eigenstates [28], as schematically shown by arrows in Fig. 2
(right). The choice of the state would depend on whether the
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FIG. 2. (Color online) Left panel: The strong-field QCC in three
levels of a chosen enantiomer. The pulsed light field coupling the
|2) and |3) levels is quantized and prepared in the |C)=|a)+|-a) cat
state, while the other two pulsed fields that couple the |1) with the
[2) and |3) levels are classical. Right panel: Time evolution of the
eigenenergies E;(i=1-3) in this three-level system, coupled by
three classical fields [28]. The population follows the E;=0 eigen-
state up to the diabatic crossing region, where it switches to one of
the other eigenstates (E,-upper or Es-lower), depending on whether
¢=0 or 7. These two situations are shown by a set of three red and
blue curves, respectively. In the QCC, the &,5 field is in the non-
classical |C) cat state, so we cannot define the eigenstates in such a
simple way, but we can still schematically draw the diagram. Then
the population splits in two parts, where each part follows one of
the above classical paths. This leads to the preparation of the en-
tangled |1)|a)+|3)|-a) state.

phase ¢ of the product ) ,0,30)5, of the three Rabi frequen-
cies equals O or .

In contrast, the strong-field QCC is again based on the
fact that if a nonclassical |C)=|a)+|-a) cat state is used as
the &,5 field, each of its two |+ a) coherent field components,
with effective phase shifted by 7, drive the system along one
of the two classical paths. In Fig. 2 (right), we illustrate this
schematically by showing that the population bifurcates at
the diabatic crossing and half of it follows each of the paths,
which is characteristic only of a system allowing for a “cy-
clic” coupling. As a result, each coherent-state component is
entangled with a different eigenstate, and the enantiomer-
light system eventually crosses over to the entangled
radiation-matter |1)|a)+|3)|-a) state.

We can describe this process quantitatively by invoking a
multilevel Jaynes-Cummings model [20]. We use the |k,n)
basis, where |k=1-3) are the molecular states of one enan-
tiomer and n denotes the number of photons in the nonclas-
sical dump field. The system wave function,

3 o

(1) = 2 X by(0)

k=1 n=0

k,n), (4)

obeys the Schrodinger equation, written in atomic units (%
=1) as, d/dt|¥(t))=—iH|¥(1)). In the RWA, we obtain the
following equations for the by, coefficients (k=1-3,n
=0,...,%):

by, =—i(Q(t)by, + Q15(0)b3,),
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FIG. 3. (Color online) Photon distributions associated with the
|k=1-3) states (top-bottom line) of a single enantiomer, presented
in the AB,=+6.4, AB,=+5 range. Left column: We use the |C)
=|a)+|-a) cat state with ||*=7. The material populations are
p1-3=0.47,0.07,0.46. The asymmetry of the distributions signals
entanglement. Middle column: We use the |n=7) Fock state and do
not perform the post-crossing rotation; the populations are p;_3
=0.22,0.61,0.17. Right column: After executing the post-crossing
rotation, the populations remain similar p;_3=0.2,0.6,0.2, but the
asymmetry in the photon distributions again yields entanglement.

—
b2,n =- i(QZI(t)bl,n + gQ(t) V’an,n—l)’

. '
b3,n=_I(Q3l(t)b1,n+gQ(t)\”n+ 1b2,n+1)- (5)

We choose the Rabi frequencies as, go(r)=gqf(¢) with f(r)
=exp[—12/ 7], Qp()=Quf(t=27) and Q5(t)=Q[f(t-27)
+f(t—47)exp{-iQytf(t—67)}]. Notice that 5(¢) is pro-
longed with respect to €,,(¢) and chirped, as in the classical
limit [28]. This guarantees that after the diabatic crossing the
level |2) is completely depopulated and the molecular basis is
rotated as follows (|1)+]3))—|1) and (|1)—|3)) —|3). The
adiabatic passage occurs whenever the adiabatic conditions
[23,24] Qy7>1 and 2gy\n+17>1 are met, i.e. if we use
Oy=1, go=0.1, 7=30, and n=|a|>~5-10.

From the numerical solution of Egs. (5) for |¥()), we can
obtain the density operator p(t)=|¥(r)){W(¢)|. The system
entanglement can be examined from its diagonal matrix ele-
ments pff(t) =(k,Blp(t)|k,B) (k=1-3) in the (over-
complete) coherent-state |3) basis [20], evaluated in terms of
the Fock-state matrix elements as

pPE1) =2 X (BB (OB (1)) (m|B). (6)

n=0 m=0

We can plot the elements as a function of the real and imagi-
nary parts of B, i.e. B,=Re B and B,=Im .

In Fig. 3, we present the final photon distributions pﬁ kB in
the |k=1-3) molecular states. In the left panels, we use light
in the [C)=|a)+|-a) cat state with |a|>=7, which falls in the
above adiabatic regime. The diabatic passage goes along two
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different paths, initially giving the |¥)=(|1)+|3))|a)+(|1)

—[3))|-a)=|1)[C)+|3)|C) entangled state, where |C)=|a)
—|~a). Thus, when the |1)%|3)—|1),|3) or equivalently the
IC),|C)—|+a) rotation is performed, the distributions as-
sume extremal values at 8~ +a, where p{"['=p;5"“#0 and
P11 "=p55=0. Therefore, we obtain the final |1)[a)+|3)
|-) entangled state, while little population is left in the |2)
state. The system dynamics can also be controlled by the
phases of the two classical fields. For excitation with the |C)
cat state, this would roughly yield entangled classical solu-
tions with phases ¢=¢, ¢+ . The possibility of such a
control is only lost if the nonclassical state has no dominant
phase.

This is the case of Fock states, shown for |n:7> in the
remainder of Fig. 3. In the middle column, calculated with-
out a post-crossing rotation [no chirping of £5(¢)], the |1)
and |3) levels have practically the same populations and the
associated photon distributions have the same shape, since
each of the two diabatic passages “slices out” about the same
“piece” from the Fock state. Here, adiabatic passages, that
take part at o=1r/2,37/2 internal phases [28], in addition to
the diabatic passages around the ¢=0, 7 internal phases, cut
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out a big part of the Fock state and associate it with the [2)
level.

The post-crossing rotation is done in Fig. 3 (right). We
can see that the populations of the |1) or |3) levels remain the
same, but the photon distributions are mirror images of one
another, signaling radiation-matter entanglement. The result-
ing light states are similar to “banana-shaped” states and re-
lated multiphase =,|e”>™"a) coherent states, generated in the
Kerr nonlinearity [13]. These states can be tested by measur-
ing the phase of the nonclassical light and correlating it with
the luminescence from the excited molecular levels. If the
QCC schemes in chiral molecules include also achiral higher
electronic states [28], we could prepare highly nonclassical
|W)=|3),|a)+|3)p|-) entangled states mixing L and D
handedness on a single molecule.

The QCC methodology is very promising, since it could
be used to prepare entangled states in a number of broken-
symmetry systems. The actual experiments might be realized
in high-Q microwave cavities with long photon lifetimes
[29]. In the strong-field QCC, where the pulsed optical fields
do not act simultaneously and the system is more susceptible
to decoherence, we might prepare the entangled states by
exciting low-energy vibrational states in chiral molecules
cooled to low temperatures [28].
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