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Stimulated Raman scattering of a multimode pump light on an one-mode phonon system is 
examined. The pump light is expected to be strong, so that it can be treated classically. The 
phonon mode and scattered Stokes and anti-Stokes modes are described quantally. The phonon 
is prepared in a coherent state and the scattered modes are prepared in displaced and squeezed 
states at the input. 

1. Introduction 

Raman scattering has been investigated in a number of papers and on various 
media [1]. Considering the problem from the point of view of the quantum optics, 
we are interested in statistics of scattered Stokes and anti-Stokes modes [2]. The 
usual way consists in eliminating operators of a scattering medium and replacing 
the latter by effective interaction constants [3]. Such problems as spontaneous 
scattering should be examined quantally [4]. Unfortunately only very simple systems, 
described quantum mechanically, can be solved exactly. One of the exceptions is 
scattering on multilevel systems [5]. 

Brillouin scattering on one-phonon mode has been investigated in [6]. This model 
can be represented for example by the vibrating mode of a simple molecule, flying 
through a resonator on the analogy of Rydberg atoms. Another example is scattering 
on a reservoir having a discrete frequency spectrum, where modes pertaining to 
a single frequency can be considered as an effective single mode. This reservoir 
can really be prepared by confined optical phonon modes in a superlattice [7]. 
Such modes have a discrete energy structure. It arises due to the lack of cross sections 
of dispersion curves for optical phonon branches from the neighbouring materials, 
appearing in the alternating layers of a superlattice. This effect leads to confinement 
of optical phonon modes in every layer and to a resultant discrete energy structure, 
with the number of levels depending on the number of elementary cells in every 
layer. Modes from different layers have equivalent parameters and could be represent- 
ed, from the view of a scattering on a thin layer, by a single mode with a correspond- 
ing interaction constant. If  we use an intense pump light, which can be treated as 
a classical source without depletion, the scattering problem on the discrete energy 
structure will be decoupled and every energy level in such a scattering problem 
can be treated separately. If in addition we assume that the pump light is poly- 
chromatic, with nonoverlapping scattered modes, or at least if we assume two 
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different polarizations, we obtain a solvable problem, which will be treated here. 
(The coherence time should be longer than the time of observation due to the constant 
phase relations between different modes and due to the resonant approximation, 
which is independent of  mode frequencies.) Polychromatic scattering appears often 
in experiments and it was studied in a number of works [8]. We consider stimulated 
scattering and prepare scattered Stokes and anti-Stokes modes in displaced and 
squeezed fields. The preparation of squeezed and strongly displaced fields has been 
suggested in [9]. Atomic transitions in a polychromatic squeezed vacuum have been 
investigated in [10]. 

The paper is organized as follows. In Sec. 2 we solve the Heisenberg equations 
for the Hamiltonian modelling the described problem. In Sec. 3 we find the complete 
antinormal and normal characteristic functions. Section 4 is devoted to the single- 
mode photon number generating functions C f  ) [11]. The end of that section shortly 
discusses the problem for cumulated modes. Numerical results in Sec. 5 demonstrate 
the case of the pump field with two modes. Conclusion closes the paper. 

2. Solution of the Heisenberg equations 

The Hamiltonian of the multimode Raman scattering with classical pumping, 
if losses have been neglected, reads 

H = heova+av + Zh(~o.~ia+asi + ~Oala+aiaal) + Hi~t, 
i 

* ei(~out-~ptj) Hin t = - -2h[gs ja+sja+ v e - i ( ~  t-q~,j) + gsjasjav 
J 

* + ei(~'"'-*")] . (2.1) + gaja+av  e - i ( ~  ) + gajaajav 

Here a +. a +. aaj, and + s~, asa, aj, av, av are the creation and annihilation operators for 
Stokes, anti-Stokes, and phonon modes, respectively; O)sj, (Oaj and a)v are their 
frequencies. The interaction with the multimode pump field is represented by the 
coupling constants 9sj and 9~j containing the field amplitudes. Frequencies and 
phases of the pump light are o)~j and 9~j, respectively. 

The annihilation and creation operators fulfil the usual commutation relation 

[aj, a~-] = 6jk ,  (2.2) 

and the frequencies fulfil the resonant approximation conditions 

(Osj = O)lj - -  ( .Or,  COaj = og,j + co v . (2.3) 

From (2.1) and (2.2) we easily obtain the full set of the Heisenberg equations 
of motion 

* ei(o~tjt-~ou)] dv = -ie)~a v + ~i[gsja + e - i(~ -}- gajaaj 
J 

. + e -  i(r 
dsj = --iO)sjasj + l g s j a v  

gtaj = --i~)ajaaj + igaja v e-i(")'Jt-q~tJ) , (2.4) 
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which, after the substitution + 

a,Ct) = b j ( t ) e  - i~' t  , (2.5) 

acquires the form 

*b e +'+u] D+ =(b, , )  + by = i Z [ g q  b+ ei+u + g~g a~ , 
J 

b+j = igs+b+v e ieu,  b~ = (b+2) + ,  

b,a = igajb~ e i~u, [ + = (b~j) + . (2.6) 

To obtain the solution for bj we rewrite (2.6) into a matrix equation and perform 
its Laplace transformation. It is convenient in the transformed matrix equation 
to arrange the row of transformed bj. into the following succession: by, b +, b~,, b + s l '  
b~, b+l, b+2, b;2, b,2, b+2 . . . .  Then calculation of  the inverse matrix can be easily 
performed and the result has the form of  sums analogous to (2.6). After the inverse 
Laplace transformation and the substitution (2.5), we have 

a+Ct) = a+(O)0 + 2 [aa (O)  V~, + a,,(O) V+,], (2.7) 
n 

ash(/) = av+(0) an  ~- 2 [ a s m ( O )  Ss m  ~t_ a + m ( O ) S a m ]  K+n + as,,(0) ~ .  , 
m 

a+.(t) = a+(O)14,, + Z[a+m(0)A* m + a+(O)A*=] K*. + a + . ( O ) J * .  
m 

Here it holds that  a + ( t ) =  (aj( t))  +, so that  we present for each mode only one 
operator aiCt) or a [  (t). The coefficients are 

i , e - i + + '  c o s  ( Q t )  Vsn = ~ g+~ sin (at)  e -i(~ ,9 = 

V..,, = ~ g*. sin (a t )  e -i(~ , 

i , e -  iosnt G,, = ~ g+,, sin (Ot) e-i(msnt--r .]GP n = , 

- - i  , (Qt)  e -i(~""t++'") H,, = ~ -  g.,, sin , d n = e i ~  , 

< , ,  = ++~e -~"~ I t  - cos  ( a , ) ] ,  Q2 

where 

K . , . -  - g""  e ir . . . .  '+~'~ [1 - c o s ( a t ) ] ,  Qz 

&m = g~+- , &, .  g~,. e ~ ' '  &m = S*~m A~m = S.*m 

Q2= 2(Ig=,,12 ig+,l~). 
n 

(2.8) 

(2.9) 
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From the commutation relations (2.2), holding for all times, and (2.7) we obtain 
the identities 

Iol 2 - E ( l ~ . l  ~ - I ~ ~  ~) = 1 ,  (2.10) 
n 

- IG.I ~ + IK. . I  2 2(ISsm] = --  [Sam[ z) + ( S s . K ~ . - %  + c.c.) = o ,  
m 

I<1 = - IKa. I  = 2 ( I A s . I  ~ - IAa . I  ~) + ( A a . < . d :  + c c.) = 0 
m 

3. Antinormal and normal characteristic functions 

We can examine statistical properties of the solution (2.7), at least in some limits. 
We will find the complete antinormal characteristic .function defined by the formula 
[11] 

C d(flv, flsi, flai, t ) = Tr {~0(0) exp [ - f l *  a v ( t ) ] e x p [ - f l *  , a~,(t)] 

x exp [ - f l * 2  a,2(t)] . . .  exp [ - f i t ,  a , , ( t ) ]  exp [ - f l * 2  aa2(t)] ... 

x ... exp [fla2 a+z(t)] exp [fla, a+,(t) ]  . . .  exp [fl~2 a~( t ) ]  

x exp [flsl a~(t)] exp [fly a+(t)]} �9 (3.1) 

Here a(t), a+(t) is the solution of the Heisenberg equations (2.7). It is necessary 
to reorder antinormally the operators ai(O ) and a+(0)in (3.1) to the chosen order v, 
si, ai. 

Let us shortly mention how different frequencies of s or a modes can be appreciated 
from the trace (3.1). In the following paragraphs we retract from the time dependent 
terms in at(t ) their high frequency dependence. This can be done when (3.1) is trans- 
formed toward the interaction picture. But when the frequencies of s or a modes are 
different we easily find that terms with the difference of frequencies o)~1 - c0~j, 
(~31 -- COaj must appear in the exponential terms of (3.1). This fact is omitted in the 
following. 

We employ the Baker-Hausdorff theorem 

exp(A + B ) =  exp(A) exp (B)exp{ - [A ,B] /2 }  = 

= exp (B) exp (A) exp {[A, B]/2} , (3.2) 

where A, B are noncommuting operators fulfilling 

[B, [A, B]] = [A, [A, B]] = 0.  

Since the trace in (3.1) is a coherent-state trace, we can replace the operators a,(0) 
and a*(0) by c-numbers ~i and a*, respectively [12]. Similarly we substitute the density 
matrix e(0) by @v, as,, ~ai[ ~(0)]~v, 0~si, ~ai) = (~d 7~3' where qS~ is the antinormal 
quasidistributions [11]. As the initial states we use a coherent state for the phonon 
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mode and displaced and squeezed states for the scattered modes. The resulting 
complete q5 d reads (see the second work from [3]) 

4L~(c% ~si, ~i)  = 1-exp ( - 2 o l ~  - ~12) 1-I ( . 7 - 7 ~  
i \ l lsi[ . lai~ / 

x exp { - l e s l -  {s,l 2 - [(v/2#)* ( e s i -  {si)2 + c.c.]} 

x exp { - l e a , -  4a,[ 2 - [(v/2/z)*i (c~ai- 4a,) 2 + c.c.]} , (3.3) 

where 4 means the coherent shift and v, # are the squeezing parameters [13]. The 
parameter 2o in (3.3), which is finally set equal to 1, can be employed to prepare 
the phonon mode in a displaced Fock state mixed with noise at the beginning [14]. 

Now we can perform the trace summation in (3.1). It is replaced by the integration 

f * * Cal(flv, flsi, tiM, t) = Iq~(ev, cz~g, e~i ) exp ,eva * - ev2v} 

x [ I  exp {esi2s* i - c~*).si } exp {ea,)-*i - e*i).ai} exp {R} daev d2esi d2ea,, (3.4) 
i 

where q~  is from (3.3) and the exponential terms resulted from the reordering 
of the exponential terms in (3.1). The parameters are 

G *  * * ~*v --fl*v O -~ 2 ( f l s i  i = __ f la iHi  ) 
i 

2*  = *Se - - - f l s i  i Ssl  ~ f l ~ ' g s j  -}- A*sl ~ f l a j g a ~  -~ flvVs~ " , 
J J 

~gai = --flai'f~i* --  Aa i  2 f l ~ j K a j  @ S*al 2 f l s j g s ~  - flvgai* . ( 3 . 5 )  
J J 

Performing the integration in (3.4), the final expression for Qr is 

Co~(p,, B~,, Pa;, t) = ['~0 1-I I~s'~a'l ~,/(afs'X"')]-* 
i 

x H exp ~ 1  [D~iD: i _ [(v/2#)~* D2i + (v/2#)~i D'27]]~ 

x exp ; [D~iDt, i -  [(v/2#)* i D21 + (v/2#)~iD , (3.6) 

where the coefficients are 

v ;  = 4; + (, , /#),  4,* - ~ , ,  v l  = 4" + ( v / , ) ~  4; + ;.;, 
~:~ = ; ,g ,  ~ ' ,  = * - Iv t# l~ ,  g~ -- -Xol4vl = , 

R, = -Ir  ~ - [ ( v / 2 # ) *  42 + c . c . ]  ; ( j  = si ,  ai) ( 3 . 7 )  
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and 

* * * C . C . ]  R = - [ ( 2 f l . iH ,  )(2fl~jGj) 4- 4- 12,6",G,I 2 
i j i 

- * * 2 z ~ v ~ ,  so , ]  + c.c.}  {~v [(y~oss.) (E~.Gj) + 
n i i 

+ E[flvV~* + A,* 2pa,g*] 2 + IEZ~*Ks,I ~ 21x. ,~ l  = 
n i i m 

{2Sam[Aam * 'f~mflam] C . C . }  . - YB.K.  + * [(2Z~Ks,) + 
m j i 

(3 .8)  

Here c.c. means complex conjugation of the previous term and in (3.4) we employed 
the following integral [15] 

I exp [-BIB[ 2 + (C/2) B *~ + (C,/2) B ~ + D1fl + Dfl*] d2fl = 

= ~ e x p { I [ D D 1 B + D 2 ( C t / 2 ) +  D~(C/2)]}, 
, / K  

K = B  2 -  CC 1, R e K >  0,  R e [ B  + ( C  t + C)/2] > 0 .  (3.9) 

If  we use the formula I~l 2 - H 2 = 1, holding for the parameters #, v of squeezed 
light [13], the prefactor in (3.6) cancels itself and the term 1/2o remains. 

The normal characteristic function C X [11] can be expressed in terms of Co~: 

Cw(flv, flsi, fit,) = Cd(flv, fls,, fla,) exp {lflvl 2 + E(lzs,I ~- + l#a,12)}. (3.10) 
i 

This will be used in the subsequent sections. 

4. Generating functions, photon-number distributions and factorial moments 

Here we will investigate the single-mode factorial moments and the photon number 
distributions of the phonon and the scattered modes. We can calculate the single- 
mode generating function C ~  ) [11] 

C}~) (2 ) = t f exp(_lB]2/Z) Cx(f l )d2[ l ,  
g A  

(4.1) 

where C~ is from (3.10) In this C~ we must set fl~ = 0 for all fl~ with the exception 
of  fl for the examined mode. For compound C~  ), [fl[2 in (4.1) should be replaced 
by the sum of Ifl~] 2 over the calculated modes. It is still necessary to replace the pre- 
factor 1/~2 in (4.1) by its n-th power, where n is the number of modes in the previous 
s u m .  
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The generating function C~ ) generates factorial m o m e n t s  ( w ' k ) . y  �9 and photon 
number distributions p(n) by [11] 

dk C~)(2)1.~=o , (4.2) ( W k > ,  = ( - -  1) k ~-~ 

p( , )_  ( -1 )"  d" C~)(2)1~.=,  . (4.3) 
n! d2" 

In the following paragraphs we demonstrate that, in the single-mode case, both 
(Wk)x and p(n) retain the same form, with different coefficients, for all modes v, 
si, ai. The items (i), (ii) and (iii) correspond to the phonon mode, the Stokes and the 
anti-Stokes modes, respectively. 

(i) First we examine the phonon mode. Calculation of the integral (4.1) for fl =flv 
can be performed with the help of the formula (3.9). Many terms cancel in the course 
of the integration. These are Rv, Rs~, R,, from (3.7) with the resident term from the 
integration, appearing in the exponent. As a result C~ ) acquires the form (3.9), 
multiplied by 1/~22o. The coefficients B, C, C1, D, D 1 are related by 

1 
B = B o  + ~ ,  C1 = C*,  D 1 = - D * ,  (4.4) 

where 

Bo = - 1  + I~1= + iv~,l ~ 1 _ 1 + ,  .,, ~ /  
)~o J f s i  ~ a~.~ ' 

C = - ~ (v/2,U)s,-~ ~ + (v/2,u)., V~ , 

D = - 0  4, - 2 (V~;~s* + V~,r (4.5) 
i 

The parameters V~, V,,, 0 and ~ j  are defined in (2.8) and (3.7), respectively. 
We can further rewrite C~  ) into the form of a generating function for the Laguerre 

polynomials [11] 

1 exp { 2% 
C~) = 2o(1- ,~I2~) ( 1 -  21&) _1 ---~121 

where the coefficients X, Y, Z, 41,2, T1,2 are 

X = - -B0[D[  2 + o2__C + c.c.. , Y = --Bo, 
2 

T 1 ~ ~ T 2  
1 - 21/22 1 - &/21 

_ _  + 2% ~ (4.6) 
1 - ~/~2J ' 

Z = ] C [  ~,  , h , ~ -  1 
Y +  ~/Z ' 

(4.7) 

In (4.6) we can use the parameter 20 to prepare the phonon mode in a displaced 
Fock state with noise [14]. For a coherent state, which is the case of this work, we 
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simply put 20 = 1. Inserting (4.6)into (4.2) and (4.3) we can obtain the photon 
number distributions p(n) and the factorial moments <Wk).~ for the phonon mode 
[11,14] 

1 p(n) - (-4)"(EF)-'12 - 1/F)" exp(zi/E 4- z21F) Li=o i! (n - i)! 

- I / ~  FI  _,_ ~ x (1  : z 1IF) 21Lf E(E-1)7 H2('- 0 [%IF(F_I1) ] , (4.8) k~ 

<W*>-k!(F- 1) k L (-4) '  ( E -  1~' 
,~o ,:o i ! ~  - O! \F  - 1/ 

(4.9) 

The coefficients E, F are defined by E = 1 - 1/,t, l, F = 1 - 1/22. In (4.9) we have 
used a relation between the Hermite and the Laguerre polynomials [11]. 

In Sec. 6 we numerically investigate the factorial moments from (4.9)). The photon- 
number distribution p(n) in (4.8) can be studied similarly. But from its structure we 
see that it corresponds to a simply displaced and squeezed vacuum field mixed with 
noise (see [1.4] and the form of ~b~ below). 

(ii) For the Stokes field with the index i, the same integration must be performed 
as for the phonon mode. The integration parameter in (4.1.) is fl = fl~i. Again many 
terms cancel and the resulting generating function C~ ) acquires the same form as 
for the phonon mode. The new coefficients follow 

S z 1 Bo=-14-IK~i,2~[, ,y] ~Tj4-iS~j.12(-~y- I ) ]  

4- - -  1 [1 + (~7 Ss,K~, + cc) ]  + ( 1 - ~ 0 )  1<I2' 

1 [(v/2/~)si(~9o ~ + 2~iS,,K~i)], 
X s i  

O = - G , ~ Y  - Ks, 2 ( S , , ~ s j  + Saj~a 5 )  - ~,,. 
J 

(4.10) 

Here, Sj., Gj, 5"j. and o,fj are from (2.8) and (3.7), respectively. The calculation of 
photon-number statistics and factorial moments is the same as for the phonon mode. 
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(iii) For the anti-Stokes field with the index i, the same holds as for the Stokes 
fields. The integration parameter in (4.1) is/~ =/~ai and the constants Bo, C, D are 

B 0 : - -  1 -t- ]ga/J  2 I ~ J[ ' ~ i l j  - 1 q- I ajl . ~ |  -~ 

i 

+ - - [ i  + ( d , *  + c .c . ) ] ,  

C = - + 
- . 

i 
_ .__ [(v/2#),, ( d  2 + 2diaAaiK~i)], 

Xai 

D = - H * ~  v - K.,  Z(A,j#s* + A,j~,j) - ~,,.  (4.11) 
J 

Similarly as for the Stokes modes, the parameters A j, Hi, dj .  and Xy are from (2.8) 
and (3.7), respectively. 

We notice that all exponentials from this paragraph, which strongly depend on 
time, can be replaced by 1. This follows from the fact that in the resonant case (and 
the same frequencies for s and a modes) they cancel. 

The antinormal quasidistributions q5 d for single modes can be found by the 
inverse Fourier transform of the antinormal characteristic function from (3.6). 
In this C.e we must set flJ = 0 for all modes excepting the studied one. The resulting 
~b~ for the modes v, si, ai acquire the form (3.9) multiplied by the coefficient 1/U2o. 
The parameters B', C', D' for the modes v, si and ai are expressed in the form of 
B 0, D, C, from (4.5), (4.10) and (4.11). These relations are B' : B o (instead o f ,  : 
= Bo + I/2), B o = B 0 + 1, D' = D + ~, D i = - D ' ,  C' = C and C i = C*. 

Combined cases (ss, sa, aa, sv, sa, sss . . . .  ) can be investigated similarly as the 
single mode case [11]. Particularly we can study combined photon-number statistics 
and factorial moments (see [3]). We already described how a combined C~ ) can 
be found (below (4.1)). The resulting coefficients wouls be very complicated and an 
analysis could be quite similar to that performed by Kfirskfi and Pe~ina [3]. 

5. Numerical results 

We will give some numerical examples of factorial moments for the fields v, s, a. 
We confine our investigation to two pump, two Stokes, and two anti-Stokes fields. 
This case can be reasonably analysed numerically and we can observe interesting 
cooperative phenomena. We divide the investigation into several points ( A - E ) ,  
in which we successively connect scattering modes to the phonon mode, choosing 
the pertinent constants gsi, g~, nonzero. From (2.9) it is clear that if the sum of [gs~l 2 
is greater than that of ]gall 2, we obtain an imaginary frequency ~2. This coresponds 
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to the exponential growth of the amplitude of scattering modes. We will not study 
this problem and will consider only the case of a real frequency ~2. Then the described 
sums are in the reversed sequence of magnitudes. 

Symmetries appearing in the Hamiltonian (2.1) simplify examination in the 
examples presented below. From the Hamiltonian (2.1) we can obtain some restric- 
tions on independent phases. A great simplification arises if coherent states are 
in the input. Then all operators al, a [  can be substituted by c~, e* (the same hold 
for ai, a + in S matrix in a coherent state representation). In this case two series 
of relations follow from (2.1) 

F v + f~;  - Fl;  = Cs j ,  Fv - f a j  + f t j  = Ca j ,  (5.1) 

where phases Fv, Fl;, F~j, Fa; are defined in Table 1. As a result we obtain the in- 
variance of an evolution for various phases when Csj, Ca1 are unchanged. For squeezed 
states these symmetries hold with the restriction which we will describe now. Let us 
fix Csj, Ca;. Then the phases F v, Fsj, Faj can be changed by rotating the initial states 
with the shifts m; (see Table 1) in the complex plane a. Phases Flj simply correspond 
to the classical light. To preserve invariance under (5.1) we must rotate the elliptical 
distributions qS4, for the rotating initial squeezed states, around their centers at the 
same time (this holds for all q54 which are squeezed and whose phases Fi are varied). 
The inclination of the ellipses is described by the phases f~i, f , j  (see Table 1). This 
rotation should be performed in the same sense with two times higher angular 
velocity. The rotating ellipse comes for the first time into itself when its angle f j  is 
changed by 2~. 

Further symmetry of the solution lies in the product ~2t. It appears in the arguments 
of the sine and cosine in the solution of the Heisenberg equations (2.4). Pumps with 
sufficiently high intensities can be treated classically. For example for f2 ~ 107 s-1 
[6] and f2t = 1 we obtain the time of evolution 10 .7 s. In figures the parameter 
t e (0, 3) is assumed. The constants gj are of the same magnitude. The transforma- 
tion toward realistic times for a chosen g,, if it is sufficiently large to describe classical 
light, can be performed easily. 

Below we present two types of figures. The first type shows the reduced factorial 
moments (RFM) (W;').~-/(W).~. - 1 with k = 2 - 4 for one or two modes. The 
second type gives the mean integrated intensity ( W )  or the second RFM for all 
modes in the studied point. We show only several typical examples and do not try 
to describe a complete behaviour of the modes. Since there are many parameters 
for every picture we summarize them in Table 1 and reference them as No. I, No. II ..... 
We use five types of lines. The phonon mode has a solid line. The first and second 
Stokes modes are represented by dotted and dashed lines, respectively. For  the 
first and second anti-Stokes modes single and double dash-dotted lines are used, 
respectively. It seem that a rule holds which orders RFM for a given mode in figures. 
The RFM are ordered (k = 2 - 4) in the times of extremes of curves from the lower 
to the higher RFM with growing absolute values of the curves. 
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Table 1. Numerical parameters of modes. 

No. 
gsl gs2 gal gal (0ll (012 my Fv 
rnsl ms2 real ma2 Fsl Fsa F, al Fa2 
Ssl Ss2 Sal Sa2 fs l  fs2 fal fa2 

0'01 0.01 0-01 2'00 0"00 0'40 1'00 0"00 
1 0'01 0"01 0'01 2"00 0'00 0'00 0"00 0"00 

0"05 0"05 0"05 0-60 0-00 0"00 0'00 0'00 

0-01 0"01 1'50 2"00 0-00 1-57 1'50 0"00 
II 0"01 0"01 2"00 3"00 0'00 0"00 0'00 0"00 

0"05 0'05 0"60 0"30 0'00 0"00 0"00 3"14 

0"01 0'01 1"70 2'00 0"00 0"00 1"50 0"00 
III 0'01 0'01 2"00 3"00 0"00 0"00 0"00 0'00 

0"05 0"05 0"50 0"70 0"C0 0"00 0"00 3"14 

0'01 1'00 0'01 3'00 0-00 0'50 1-50 0"00 
IV 0"01 1"50 0"01 2"50 0"00 1-57 0"00 0"00 

0"05 0-05 0-05 0"60 0"00 3-14 0"00 0"00 

1"00 0'01 0"01 3-00 --  1"00 0"50 1"50 0"00 
V 1"50 0'01 0"01 2"50 1"57 0"00 0'00 0"00 

0"05 0"05 0"05 0'60 3'14 0"00 0"00 0"00 

1"00 1'00 3"00 3"00 0"00 1"57 1"50 1"57 
VI 1"80 2"50 2"00 3"00 0"00 3"14 0"00 3-14 

0"40 0'50 0"40 0"70 3"70 0"00 3"14 0"30 

1"00 1"00 3"00 3"00 1-57 1-57 1"50 1"57 
VII 1"80 2"50 2"00 3"00 0"00 3-14 0"00 3-14 

0'40 0'50 0"40 0"70 3'70 0'00 3"14 0"30 

1"00 1"00 3'00 3'00 3'14 1'57 1-50 1"57 
VIII 2"50 1"50 2"50 3"00 3"14 3'14 3.14 2"50 

0"60 0"20 0"30 0"60 3.14 0"00 0'40 0"00 

For the purpose of tabelation we define ~ j  ~ m.i exp (iF/), ffv = my exp (iFv) (v/2,u)j  = 
= Sj  exp (ifj). 

(A)  F i r s t  we set ga2 + 0 a n d  g i  = 0 for  a l l  o t h e r  g l .  This  c o r r e s p o n d s  to the  

sca t t e r ing  o f  a s ingle  an t i -S tokes  m o d e .  

I n  Fig .  1 we see the  k- th  R F M  wi th  k = 2, 3, 4 fo r  the  p h o n o n  a n d  the  second 

a n t i - S t o k e s  modes .  T h e  p a r a m e t e r s  a re  in N o .  I. W e  obse rve  tha t  R F M  for  bo th  

m o d e s  are  pe r iod ica l .  Pa r t i cu l a r ly  we can  see a s u b - p o i s s o n i a n  b e h a v i o u r  at  s o m e  

t imes .  Th is  nonc las s i ca l  p h e n o m e n o n  t r a n s f o r m s  i t se l f  f r o m  the  an t i -S tokes  t o w a r d  

the  p h o n o n  m o d e  a n d  back .  

(B)  H e r e  we let  9ai :# 0 fo r  t he  two  an t i -S tokes  m o d e s  and  pu t  gsi = 0 for  t he  Stokes  

m o d e s .  
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In Fig. 2 there is the mean integrated intensity for the phonon and the anti-Stokes 
modes, with the parameters in No. II. We can see that the phonon mode has harmoni- 
cal (W) ,  but the s, a modes have only periodical <W). This can be already expected 
from the solution (2.7). The period of the anti-Stokes modes is two times higher than 
that of  the phonon mode. I t  seems that the sum of the anti-Stokes modes lies in the 
opposite phase to the phonon mode, similarly as in Fig. 1. 
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Fig. 1. Fig. 2. 

Fig. 1. Time evolution of the k-th RFM with k = 2, 3, 4 for the phonon arid the second ant~- 
Stokes modes. The parameters are in No. I of Table 1. Sub-poissonian behaviour appears periodic- 

ally in both modes. 

Fig. 2. Mean integrated intensity for the phonon and the two anti-Stokes modes with the con- 
stants in No. II. The phonon mode has harmonical < W),  but the s, a modes have only period- 
ical < W>. The period of the anti-Stokes modes are two times higher than that of the phonon 

mode. 

Figure 3 shows the same situation as Fig. 1 does, but for the two anti-Stokes 
modes. The parameters are as in Fig. 2. Here it is important  to mention that the 
maxima in the k-th moments and k > 2 appear at the local minima of (W> for the 
given mode. This can also be expected from the definition of RFM. I t  is interesting 
that the mode with super-poissonian statistics (a2) can acquire a sub-poissonian 
statistics in the course of  evolution. This event can appear  several times during 
one period. 

Figure 4 is the continuation of Fig. 3 for the phonon mode. Here a very impressive 
behaviour of RFM around the minima of <W> can be seen for this mode. The leading 
slope grows monotonously and nearly linearly up to some maximum. Then a very 
narrow fall of  noise comes. After this sub-poissonian minimum the RFM again 
quickly acquire the previous value for a short time. 

In Fig. 5 we see the second RFM for the phonon and the anti-Stokes modes with 
parameters from No. III .  One can observe interesting oscillation in the second 
RFM of the anti-Stokes modes. Since they are in opposite phases, we can presume 
that they correspond to some cooperative phenomenon in the two modes. 
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Fig. 3. Fig. 4. 

Fig. 3. Same as Fig. 1, but  for the two anti-Stokes modes. The parameters are as in Fig. 2.The 
maxima in the k-th moments  and k > 2 appear at  the local minima of < W )  for the given mode. 
The mode a2, having super-poissonian statistics at  the beginning, can acquire periodically a sub- 

poissonian statistics in the course of evolution. 

Fig. 4. Cont inuat ion of Fig. 3 for the phonon  mode. Very narrow noise collapses can be ob- 
served around the minima of < W )  for this mode. The curves grow nearly linearly in some time 
intervals and then abruptly fall to negative values. At these times the phonon mode has sub- 

poissonian statistics. 

F i g u r e  6 s h o w s  t h e  d e t a i l  o f  R F M  f o r  t h e  s e c o n d  a n t i - S t o k e s  m o d e  a n d  k --- 2 - 4 

f r o m  Fig .  5. W e  c a n  o b s e r v e  t h a t  h i g h e r  R F M  l o o k  l ike  a s i m p l e  m a g n i f i c a t i o n  

o f  t h e  l o w e r  R F M .  S u c h  n a r r o w  n o i s e  o s c i l l a t i o n s  c o u l d  be  used  fo r  p h a s e  l o c a t i o n  

a p p l i c a t i o n s .  
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Fig. 5. Fig. 6. 

Fig. 5. The second R F M  for the phonon and the anti-Stokes modes. The constants are from 
No. III. Typical noise oscillations are superimposed on the periodical curves. They appear with 
opposite phases in the two anti-Stokes modes and reveal some cooperative behaviour of the two 

modes. 

Fig. 6. Detail of R F M  for the second anti-Stokes mode and k == 2 - -4  from Fig. 5. Higher R F M  
look like a simple magnification of the lower RFM.  The narrow noise oscillations could lead 

to new applications. 
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(C) Now we couple the Stokes modes to the phonon mode. First we let nonzero 
only the second Stokes and anti-Stokes modes. 

In Fig. 7 we observe the second RFM for the phonon, the second Stokes and 
anti-Stokes modes with parameters from No. IV. We observe that the curves for the 
phonon and anti-Stokes modes are similar to those from Fig. 1. The anti-Stokes 
curve is rather deformed by the presence of the Stokes mode. This mode does not 
have a complicated behaviour. 
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Fig. 7. Fig. 8. 

Fig. 7. The second R F M  for the phonon, the second Stokes and anti-Stokes modes with par- 
ameters from No. IV. The phonon mode becomes squeezed in the course of evolution similarly 
as in Fig. 1. The presence of the Stokes mode changes the behaviour of the anti-Stokes m o d e  

Fig. 8. Mean integrated intensity for the same values and modes as in Fig. 7. The second anti- 
Stokes mode acquires rather large values and is not harmonical. The other two modes seem 

to be more regular. 

Figure 8 shows the mean integrated intensity for the same values and modes as 
in Fig. 7. Again it can be seen that the anti-Stokes mode has the most complicated 
structure. It looks like to be formed from a superposition of two harmonics. But 
this is only a simplified view on the situation. 

(D) In this point we use a different index for tile Stokes and the anti-Stokes modes. 
This enables us to study anomalies observed when scattering modes with different 
indices are coupled to the phonon mode. 

Figure 9 is analogous to Fig. 7 and corresponds to the parameters in No. V. 
The Stokes modes are exchanged and the parameters of  the first pump and the Stokes 
modes are the same as in Fig. 7. Only the phase of  the first pump field is different 
from that in Fig. 7. I f  the phases of  the pump modes were the same, Fig. 9 would 
be identical to Fig. 7, but for the exchange of the Stokes modes. The Hamiltonian 
(2.1) can give yet another interpretation. Different phases of  the pumps can be 
considered to be equivalent to making the constant 9s2 of the mode s2 complex, 
and at the same time to neglecting the exchange of the Stokes modes. In Fig. 9 
some noise expansion can be seen both in s and a modes. 
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In  Fig .  10 the re  i s  the  m e a n  i n t e g r a t e d  in tens i ty  fo r  t he  p a r a m e t e r s  f r o m  Fig.  9. 

We  can see tha t  the  s i tua t ion  seems to  be o p p o s i t e  w h e n  c o m p a r e d  wi th  Fig .  8, 

where  large ampl i t udes  were  in < W )  a n d  smal l  ones  in t he  second  R F M .  H e r e  the  

s i tua t ion  is oppos i t e .  
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Fig. 9. Fig. 10. 

Fig. 9. As in Fig. 7, but for the parameters in No. V. Here the Stokes modes are exchanged and 
the phases of the two pump fields are different. We can see that this inequivalence of phases 

leads to sharp production of noise in one of the anti-Stokes modes at some times. 

Fig. 10. As in Fig. 8, but with the constants from Fig. 9. Here the behaviour is much more regular 
than in Fig. 8. The roles of the mean integrated intensity and the second R F M  in Figs. 7, 8 seem 
to be opposite to that in Figs. 9, 10. Here there are large amplitudes in R F M  and small amplitudes 

in < W>. 
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Fig. 11. Fig. 12. 

Fig. 11. The second R F M  for all modes and parameters from No. VI. In the course of evolution 
some of the modes become sub- and other super-poissonian. Noise collapses follow noise ex- 
pansions. G:nerally, the Stokes modes have simpler behaviour than the anti-Stokes modes. 

Fig. 12. Mean integrated intensity for the parameters as in Fig. 11. We can observe that local 
minima occur simultaneously in both anti-Stokes modes. < W> for the phonon mode is harmonical 

but it is more complex for the other modes. 
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(E) Finally we study the general situation with all gai and gsi nonzero.  

Figure 11 shows the second R F M  for all the modes for  parameters f rom No.  VI. 
It is seen that  in the full generality the situation becomes quite uneasy to survey. 

The curves are very structured. Particularly we see that  they become sub-poissonian 
at some times. The Stokes modes are more  elementary than  the anti-Stokes modes. 

In  Fig. 12 there is the mean integrated intesity for the parameters  as in Fig. l l .  

We can compare  the phase relations of  <W) for different modes and see how the 
first and the second R F M  are correlated. <W) for the phonon  mode  is harmonical  
in all figures. The Stokes modes are again simpler than the anti-Stokes modes. 

Figure 13 presents the same situation as Fig. 11 does, but the phases o f  the pumps 
have equal values (No. VII).  We can observe that  the curves are completely different 
in compar ison with Fig. 11. Some deviation f rom harmonici ty  can be seen in the 

phonon  mode.  This is in contrast with the complex behaviour of  the phonon  mode 
in Fig. 11. 
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Fig. 13. Fig. 14. 

Fig. 13. Same as in Fig. 11, but the phases of the pumps have equal values. The parameters are 
in No. VII. Now, noise appears especially in the phonon mode. The dependence on the phases 
of the pumps is so strong that the curves are completely different from those in Fig. 11. Here 

they seem less structured. 

Fig. 14. As in Fig. 12, but for the parameters from Fig. 13. Here the behaviour is much more 
regular than in Fig. 12. This reflects a strong dependence of the modes behaviour in the evolution 
on the phase of the pumps. Minima and maxima of the two anti-Stokes modes are in the counter- 

phase. 

Figure 14 shows the mean integrated intensity for parameters in Fig. 13 and it 
is therefore the analog of  Fig. 12. We can observe that,  as for the second RFM,  the 
curves are quite different f rom Fig. 12. This suggests that  the behaviour o f  modes 

in the evolution is very dependent on the phase o f  the pumps.  The dependence on 
parameters o f  any scattered mode (amplitude, phase, squeezing) is much weaker. 

Figure 15 shows the second R F M  for the constants f rom No.  VIII .  Similar com- 
ments as in Fig. 11 could be given here. The first anti-Stokes mode has an interesting 
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behaviour .  In  some moments  its second R F M  turns  near ly  at  the  r ight  angle  to the 

h o r i z o n t a l  direct ion.  The poin ts  o f  the  p h o n o n  curve are interest ing,  too.  

F ina l ly ,  Fig.  16 is the  de ta i l  o f  R F M  with k = 2 - 4 for  the Stokes modes.  We 

see tha t  the  Stokes modes  are  general ly  less s t ructured than  the ant i -S tokes  modes.  

They have regular  sub-super -poissonian  behaviour .  
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Fig. 15. Fig. 16. 

Fig. 15. The second RFM for the constants from No. VIII. A very irregular behaviour can be 
observed in the phonon and the first anti-Stokes modes at some times. This suggests that the 

Fourier resolution of these curves would give large components of higher harmonics. 

Fig. 16. Detail of RFM with k = 2--4 for the Stokes modes for the parameters from Fig. t5. 
The curves have regular sub-super-poissonian behaviour. The mode which was super-poissonian 

at the beginning never becomes sub-poissonian for this choice of parameters. 

To conclude this section we can say tha t  the  scat ter ing with squeezed l ight has 

a number  o f  anomal ies .  Par t icular ly  with a mu l t imode  pump  the R F M  and the mean 

in tegra ted  intensi ty  o f  all modes  become very compl ica ted .  

6. Conclusion 

We have invest igated s t imula ted  R a m a n  (Bri l louin)  scat ter ing on the system which 

can be mode l l ed  as a one p h o n o n  mode .  We have used a s t rong mul t imode  pump  

light,  descr ibed classically. The scat tered modes  were p repa red  in displaced and 

squeezed states and  the phonon  mode  was in coherent  state. As the result  of  the 

in terac t ion  interes t ing effects have been observed.  We have found very i r regular  

behaviour  o f  R F M  when several  squeezed modes  are  coupled  to the phonon  mode.  

Par t icular ly ,  the modes  have per iodica l  R F M  at the chosen condi t ions  and they can 

pass f rom super -poissonian  statistics toward  sub-poissonian  ones. 

The author would like to thank Dr. J. PeY'ina for fruitful discussions, and Dr. A. Luk~ for 
comments on the results. 
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