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Abstract. We develop a theory of laser beam generation of shift currents in non-centrosymmetric
semiconductors. The currents originate when the excited electrons transfer between different bands
or scatter inside these bands, and asymmetrically shift their centres of mass in elementary cells.
Quantum kinetic equations for hot-carrier distributions and expressions for the induced currents
are derived using non-equilibrium Green functions. In applications, we simplify the approach to
the Boltzmann limit and use it to model laser-excited GaAs in the presence of longitudinal optical
phonon scattering. The shift currents are calculated in a steady-state regime.

1. Introduction

Photovoltaic phenomena in semiconductors can originate in the built-in or induced asymmetry
or inhomogeneity of their crystal structures [1]. In non-centrosymmetric (NCS) crystals,
different generation rates for carriers at momenta £k can be induced by asymmetric electron—
hole scattering and other processes. The resulting momentum imbalance generates the so-
called ballistic current. Recently [2, 3], this momentum asymmetry of carrier generation in
semiconductors was achieved by mixing one- and two-photon transitions at frequencies 2wy
and wy, respectively. In reference [4], we describe the effect in GaAs in the presence of
scattering on LO phonons. We have also suggested that the current induced by this two-beam
coherent control could drive intercalated atoms in carbon nanotubes [5].

In bulk NCS semiconductors, light-induced interband transitions of electrons in reciprocal
space are accompanied by their asymmetrical shifts in the real space between atoms in
elementary cells. Similar shifts occur if the transitions are induced by scattering or in recom-
bination. The first realistic description of analogous effects in magnetic materials was given
by Luttinger [6]. The carrier shifts generate the so-called shift current [7-10], which has
in general three components, excitation J,, scattering J; and recombination .J,, named after
the corresponding processes. The carrier transitions and the related currents are symbolically
sketched in figure 1(a). The ballistic current and the excitation part of the shift current .J, in
GaAs were investigated analytically in reference [11]; J, induced by transitions between light-
and heavy-hole bands was also studied [12]. A summary of older results relating to the shift
current is presented in reference [1], but the derivation of the relevant formulae is less clearly
documented.

Here, we develop a quantum kinetic theory for the shift current induced by laser excitation
and scattering. The expressions for the current components and the transport equations for
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Figure 1. The scheme of the shift-current generation in a NCS semiconductor is shown in panel (a).
The current has three components, related to the processes of electron excitation J,, scattering
J; and recombination J,.. They result as a consequence of real-space shifts of electrons in the
elementary cells that undergo the corresponding transitions in reciprocal space. In panel (b) we
show a small section of a zinc-blende structure in GaAs. The excitation conditions and the shift
currents J, s » generated are described in the text.

carrier populations are derived using non-equilibrium Green functions [13] (NGF). In appl-
ications, we simplify the approach to the Boltzmann limit and use it to study optically excited
GaAs in the presence of scattering by LO phonons. In our modelling, we consider steady-state
excitations by linearly polarized light, and find that J, is reasonably large, while J; is two
orders smaller and J, is negligible. Therefore, continuous electron pumping through the crystal
can be achieved. The ultrafast response of J,, without additional saturation and relaxation tails
from J; and J,, could be useful in optoelectrical applications.

The paper is organized as follows. In section 2 we describe our model system. Section 3
is devoted to the derivation of expressions for the current components. In section 4 these
expressions are further approximated. Numerical results for the hot-electron populations and
the induced currents in GaAs are presented in section 5.

2. The system studied

The physics of the phenomenon can be understood from figure 1(b), where a segment of the
zinc-blende structure for GaAs is shown. The valence band states are predominantly localized
around the As atoms, while the conduction band states are shifted toward the Ga atoms.
Therefore, if the light is polarized along the (1, 1, 0) direction, the excited electrons transfer
from the As atoms at the bottom to the Ga atoms in the middle, giving the excitation current
J, in the (0, 0, —1) direction (negative charge). If the light is polarized in the (1, —1,0)
direction, electron transitions along bonds orthogonal to the light polarization, i.e. from the As
atoms at the fop to the Ga atoms in the middle, generate J, in the (0, 0, 1) direction. During
relaxation, the excited electrons (holes) slightly move their centres of charge and stay close
to the Ga (As) atoms. Therefore, J; is rather small, as we show in our calculations. On the
other hand, scattering redistributes the carrier momenta, so electrons at Ga atoms recombine
symmetrically with holes at all neighbour As atoms, which gives negligible J,.
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2.1. The model Hamiltonian

The space shifts of carriers and the related currents can be calculated from a combination of
interband and intraband transitions. The length gauge with the elements of the position operator
x evaluated as in Blount’s work [14, 15] gives a convenient basis for the description [16].
Therefore, we model the photoexcited bulk GaAs by the following Hamiltonian [16]:

H =" ea(k)a) aur+ Y hwgbibg

ak q
1 da da;
. + ok ak . T
—ieE(t) - {5 Z(aa’k % ok aa,k) —1 Z gaﬁ(k)aa,kaﬂvk}
ok o, Bk
+ Y Mog(k. b — q)a) apiqlby +b.,) o
a.Bk.q

where coupling to LO phonons is added. Here the creation (annihilation) operators al’k

(aq.1) describe electrons with the band index « at wave vector k in the Brillouin zone. The
operator b; (bg) creates (annihilates) phonons with the wave vector q. The electric field
is E(t) = Ey,, (e " + E_, (t)e"' where E,,,(t) = E*, (t) are complex envelope
functions. Spins are included in the current by a factor of 2 (see equation (12)).

2.2. The matrix elements

The matrix elements xg(k, k') for the position operator are defined as [14]

xop(k, k') = 1848 %S(k — k) +8(k —K)épk) 2
where the functions

Eup (k) = &5, (k) = /U'C' da u(’ik(m)i%wk(w) 3)

are integrals over the unit cell of the fast components u,(x) in the Bloch wave functions
Yor(@) = e*%uy(x). In the following, we use the term Tog(k) = &,p(k) for the band
off-diagonal elements o # B. They are related to the interband velocity elements by

€p(k) — ea(k)

vop (k) = (o, k|(=ih/m.)V|B, k) = o

Tap (E). “

The electron—phonon matrix elements [17, 18]

Myp(k, k—q) = M(@)vap(k, k — q) Yap(k, kK —q) = /UC dx uy, (v)upp—q(x)  (5)
include the structure factors y,g(k, k — q), which separately depend on the ‘incoming’ and
‘outgoing’ momenta y,g(k, k—q) # f(q). Therefore, the factor M (q) in expression (5) gives
the rate of electron scattering, while the real-space shifts of electrons are solely controlled by
the lattice [9, 10], determining the factors y,g(k, k — q) (see appendix B). In the approx-
imation of a constant LO phonon energy hiw, ~ hwg, the element M 2(q) is given by [18]

M? 1 1
M (q) = —% M} = 2ne*hwo| — — — ). (6)
|q| €0 €0

The parameters relevant for GaAs are used: hwg = 36 meV, g = 12.5 and e, = 10.9.
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3. Description of the system

We describe the problem using non-equilibrium Green functions [19,20] in the matrix form
G, similarly to in reference [4]. The shift current can be expressed through the interband
elements for NGF, which must be known on a semi-analytical level, so the space shifts can be
obtained first by algebraic operations. In older works, the manipulations were carried out in the
density matrix formalism, but the intermediate steps were less clearly presented. More recently,
NGF were used to investigate the shift current from electron hopping in superlattices [21], and
in other photovoltaic phenomena [22,23].

Here, we develop an approach similar to that of reference [21], and apply it to our system in
asteady-state regime. The interband functions G,g (o # B) are expressed using the differential
version of the Kadanoff-Baym equations [19] (KBE) in terms of the intraband G, from the
scattering integrals of these KBE. Then the G4 are substituted in the formula for the shift
current, where the above-mentioned reordering is performed. Finally, the G, are calculated
numerically from the integral version of the KBE [4]. We have not been able to perform this
reordering, at least for J, when G, was expressed using the integral KBE.

3.1. The differential KBE

The differential version of the KBE for the matrix correlation function G= is [19, 20]
(x = (k, t); integration over x is implied)

(GR, 10) G 1) = (B0 DGE, 1)) %

where (GR0)~! = (Gf,;o)’léalg is the inverted free propagator [19]. The ‘lesser’ operation
< can be applied to the functions on the r.h.s. of (7) with the help of the Langreth—Wilkins
(LW) rules [24] (AB)< = A<B* + ARB<. The KBE can be also written in the form where
(G9! acts on G= from the right-hand side, and, in the scattering term, X is interchanged
with G.
Subtraction of these two KBE gives [20] (T = (t +1')/2)
3G x) o
i — (ealk) = es(K))Gis (1 1)
=210 G OG5( X) = G (G XD Zp78(X XD

+ (57 (6 0G5 xD) ™ = (Gay 6 D) Bip (X 1)) ™ ®)
In the scattering integrals on the r.h.s., field (X f,44) and scattering (X, 4p) self-energy functions
are introduced [4]. The terms do not commute because of the time, momentum and band
indices. The momentum and band non-commutativity ultimately leads to the shift currents.
The time issue should be less serious, if pulse fields with slow envelope functions are applied
to the system, so that gradient expansions in terms of the difference time 7 can be performed
around the CMS time coordinate 7' [19,25]. We adopt this approach here and include only the
zero-order terms.

3.2. The self-energy functions

In order to obtain the field self-energy X (..4 for the Hamiltonian (1) in the length gauge,
it is necessary to perturbatively expand the Green functions in terms of the light excitation,
similarly to in reference [4]. Direct calculation gives

1/ 0 d
S gk, K, 1,1) = —ied(t — 1)8(k — K)E() - {g(ﬁ - ﬁ)&xﬁ - isaﬁac)} ©)
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which has zero correlation parts X ;. Fia ﬂ(k: K',t,t") = 0. This self-energy acts as an operator,
due to the presence of derivatives. When surrounded by functions with two momenta variables,
it differentiates the function in front (behind) over k (k), and sets k = k’. The derivatives can
be shifted from one side to the other side by a partial integration, which changes their signs
and combines the two with a prefactor 1. We can also introduce its steady-state form

1/ 0 a
X% aﬂ(k k)= —ieS(k — k')EL,, - {E(W — Bk) 150,,3(16)} (10)

which can be obtained by a Fourier transformation of the Dyson equation in the frequency
domain [19]. The frequency arguments of the Green functions following ij:aﬂ are shifted by
Fawy (see reference [4]).

Finally, we have to write down the correlation function for the electron—phonon self-
energy, which we use in the self-consistent Born approximation:

sk K 1, 1) = Moy (b, k — @Msp(k' — @, KNG ;(k — q. k' —q.t,t)D~(q. 1, 1").
(11)

Here, the non-locality in momentum and time as well as all kinds of interband transitions are
included (summation over g and repeated band indices).

3.3. The total shift-current density J

The shift-current density J can be expressed in terms of the interband velocity elements vg, (k)
and the k-diagonal elements of the correlation functions G4 (k, k). If the perturbing electric
field is homogeneous in real space, i.e. invariant with respect to the lattice translation of the
crystal, then we would naturally expect these functions to be k-diagonal:

Gk, k) = Gy (k)S(k — k) (2m)°.

In reality, equation (8) for the Hamiltonian (1) in the length gauge should be further trans-
formed [20], to explicitly give zero off-diagonal elements, and this could generate additional
terms. In our problem these transforms would be complex, so we make the ansatz that equ-
ation (8) gives momentum-diagonal G ;4

The steady-state shift-current density J can be expressed as follows:

_ e [$h k)G, (k. 12
f (27T)3 Y vpa(k)G sk, @) = Jo + T+ J, (12)
aFp

where the prefactor 2 accounts for the spins. The components J, ; ,, which represent the con-
tributions of the three processes depicted in figure 1(a), can be obtained, if vg, from (4) and the
solution G <ﬁ of equation (8) are substituted in expression (12). In the steady state, the first term
on the Lh.s. of equation (8) is absent. The remaining G4, expressed through the scattering
integrals on the r.h.s., can be substituted in (12), which was also used in reference [21]. In
transient situations, the time derivative of G;ﬁ in equation (8) must also be included, but we
are postponing this problem to future studies. Terms with equal band indices @ = 8 in (12)
would give the ballistic current density, calculated in reference [4] for excitation by two laser
beams.

3.4. The excitation current density J,

Let us first find the expression for J, from the two terms with X ¢.,g on the r.h.s. of equation (8).
Since J, results in the second order of the laser field, X .44 in those terms must be combined
with the first-order interband correlation functions G7 wp (Gosaa Z 1;a8Go;pp) =, expressed
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through the interacting Green functions in the absence of a laser field [4] Gg.4q. The resulting
J, has the form

dw
J. _zle/ /(2n)3 S k)

aFBiy
x (5E 4, U, k) (Goyy (b o, 0B, (R, Ks) G s, b 0 % )

— (Goaalk, k1, @) T, (ki, k2)Goryy (o, ks, 0 + w0)) "7, 5 (k3, k))
(13)

where we neglect vertex corrections to G7, 4, Which can contribute especially in transient
situations [4], and assume that Go.op ~ 0. We also write two momenta in the equilibrium
Green functions G.q(k, k'), in order to take the derivatives from the field self-energies
Y r.ap(k, k'), even though they fulfil Go.aa(k, k') = Go.aa(k)d(k — k')(2m)? without the
above ansatz. In appendix A, we show [16] that after algebraic manipulations only elements
with y = B (y = «) remain in the first (second) expression of equation (13).

Finally, we obtain the c-component of the vector for the current density .J,:

© =2 f / G 2 Zrﬁac(k)raﬂ(k:)Eiwo E2, (Goaa(k, 0)Gopp (k. & £ )~
(14)

where the summation over a- and b-components is performed. The sign convention and the
terms rg,..(k) are described in appendix A. For weak scattering, expression (14) agrees with
density matrix calculations [16]. In this formalism, also a non-zero virtual term below the band
gap can be traced in an expression analogous to (14). It can be cancelled by a similar term,
with opposite sign, resulting from the band-diagonal contribution v,y G, to the current.

For light linearly polarized in the b-direction, the product of the components E}, with
rga;c(k)rjﬂ(k) can be further simplified. If the matrix elements are used in the form [9, 10]

rga (k) = |r§a (k)|ei‘7’§a(k), we can arrange J, as follows:

b R R A
J, =2¢° / /<2n)sZ|Em@ <1Reﬁa(k)|raﬁ(k)| oyt

x (Gosaa (k. 0)Go,pp (K, @ £ wp)) (15)

where we have introduced the excitation shift vector Rfj_ pe With the c-component

d¢pp, (k)
ok¢

From expression (16), it follows that the vector is invariant under the phase transformation
[9,10,16] Y (z) — e ® gy (z) of the Bloch functions ¥y (x), where 6, (k) are arbitrary
well-behaved functions. It is also anti-symmetric, Rf; ﬁa(k) = _RS;a,s(k)’ in the band index
substitution o <> 3, since r4p(k) = (g (k))*. Note that in (15) the anti-symmetric Ri’;aﬁ (k)
combines with the imaginary (spectral) values from the Green function product, while the
band-symmetric derivative 8|r0’j/3(lc)|2 /0k combines with its real (main) part, representing
renormalization effects due to interactions. An analogous situation occurs for the scattering
shift vector Ry, gg(k, k') (see appendix B) and for the scattering current density Jy, discussed
below.

Ryl (k) = + &40 (k) — &g (K). (16)



Quantum kinetic theory of shift-current electron pumping 4857

3.5. The scattering current density J

The formula for J; can be obtained, if the remaining two terms from the r.h.s. of equation (8),
with the electron—phonon self-energy in (11), are substituted in expression (12). In this work,
we consider only intraband relaxation, so band-diagonal Green functions are used in J;. We
also assume that they depend on one k-variable, in accordance with our ansarz.

Let us concentrate first on the two terms r(Z8G< — G® X <) in the expression resulting
from (12). They can be written as follows:

> rpa (k) (B8 (k. 0)G sk, 0) — GE (k. ) Sy (k. )
a#B
= > rpa(k)Myy (k. k — PGE (k— §.0» — ®)D™ (.  — )
aFpy
x Myg(k — q. k)G, (k. w)

— Y rpa(k)May (k. k — G5, (k — §. 0 — @) D*(q. © — @)
aFpiy
x M,g(k — q, k)G;ﬁ(k, )

— Z ray(k)ny (k, )M, g(k, k — (j)GEﬁ(k —q,w—0)D~(q, v — @)
y#o:p
X Mgy (k —q, k) (17)

where the band arguments have been shifted in the last term. In the propagator part of the
electron—phonon self-energy, the formula ©® o« (GD)R = GRD> — G=DR has been used,
which is valid for functions with this argument ordering [24,25]. The first term on the r.h.s. of
equation (17), resulting from GR D=, looks similar to the last term, but the two differ in the
type of phonon correlation function D~, D= and the energy—momentum arguments in G g4,
G fy and M,g.

This can be changed, if the substitutions k¥’ = k — g and o' = w — o, followed by
" = —&, are used in the last term of (17); we take advantage of the fact that the Bose—
Einstein distribution satisfies

npe(@) = 1/(exp(hw/kT) — 1) = —(1 + npp(—w)).

The sum of the first and last terms is

( > Tpalk) Moy (kb — @) — Y Mpa(k, b — @)ray (k — é))Myﬂ(k —q.k)
a#py y#a:p

x GR (k— G, 0 —®)D”(q, 0 — &Gk, w). (18)

Here the band indices of the electron propagator and correlation function can be set equal,
y = B, because intraband relaxation is considered. The commutator in the large bracket,
multiplied by the element M, g(k — q, k), can be rewritten in terms of the scattering shift
vector Ry gg(k, k — q) and a renormalization correction, as shown in equation (B.3). If
interband relaxation is also considered, the resulting formulae can be generalized analogously.
The other two terms 7(X£<G* — G<X4) in (12) can be reordered similarly, if again just
the term GAD< in ¥4 « (GD)4 = GAD> — G=D* is considered. The remaining terms
—G<DR,—G<D" from (GD)R, (GD)*, respectively, can also be summed to this form. Here,
the imaginary part of the phonon propagator appears, instead of the electron propagator. Its real
part would give further renormalization contributions, if phonon scattering was considered.
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We finally have that the scattering shift-current density J; in the steady state is equal to

do [ dk _ o R _ _
JS = —4e E m; Rs;ﬂﬂ(k,k—q)|Mﬁlg(k,k—q)| ImGﬂﬂ(k:—q,w—w)

1 (3| Mgg(k —q,k)> |Mgg(k — q, k)|
_ L1 (0I1Mps(k —q. )"  91Mps( q | Re GRy(k — 4.0 — @)
2 ok Ik — q)

x D7 (§, ® — ®)Gs(k, ) + Ry pp (ko k — | Mpg (. k — @)

1
x 1(Gjak = 4.0 — @) ~ Giy(k — 4. + ) Gy (k. a))}. (19)

The intraband correlation functions G g4 can be obtained from the solution of the KBE similarly
to in reference [4]. If the hot-electron population is small, then it is possible to keep in (19)
just the terms linear in G gg.

The renormalization terms in (19), with derivatives of matrix elements, give non-classical
corrections to the shift current, due to guasiparticle broadening of the carrier spectra. Note,
however, that J; is practically independent of the scattering rate, at least for weak scattering,
since Ry gg is determined by the crystal structure (see appendix B), and the relaxation carrier
flow is equal to the injected flow. From the same reason, the temperature dependence of J is
also weak. Expressions analogous to equations (14), (19) can be derived for the recombination
current density J,, but in section 5 we argue that J, is usually negligible.

4. Approximate solution for the shift currents

Here we approximate the expressions for J, and J; to the Boltzmann limit, which can give
reasonable results for materials with a moderate scattering. First we simplify J, in (14),
where the light orientation is chosen along the (1, 1, 0) direction, appropriate for GaAs. Next,
we approximate the equations for the correlation functions G4, and insert their solution in
equation (19) for J;, together with the shift vector Ry, gg in (B.3).

4.1. The excitation current density J,

In numerical studies, it is convenient to evaluate J, from expression (14) even for linearly
polarized light, so that ab initio calculations of the elements g, (k) can be performed along
the usual crystal axes. Once evaluated, rg, (k) can be used to obtain the elements rgq;. (k)
from the formulae (3.36) and (3.37) in reference [15]. For weak scattering, renormalization
effects contained in the derivatives o |r5ﬁ (k)|?/9k from equation (15) can be neglected, which,
in equation (14), is equivalent to taking only the imaginary part of rga;c(k:)rgﬁ (k), anti-
symmetric in the band indices. Then, G5,G2 (¢ = v, B = c) there can be combined
with —GR G5, (¢ = ¢, B = v), which gives G, (—2iIm GR) = iA,,A.., where A, are
the electron spectral functions [4]. The terms with exchanged band indices are zero, since in
equilibrium the conduction band is empty; i.e. G (k, @) = A..(k, w)npp(w) ~ 0, where
npp(w) = 1/(exp(hw/kT) + 1) is the Fermi—Dirac distribution.

The integration over k and w in the two spectral functions A,,A. is performed as in
reference [4]. A parabolic approximation for the bands is considered in these integrations (not
in rog(k)), with wave vectors tuned to the resonant values k7., used to describe electrons

res?
that relax between the energy levels E”, = E°, + nhwg (laser tuning to E°, ). The notation

for the angles is related to the electric field E,, = (Ewo/«/i)(l, 1, 0); the angle ¢ € (0, )
is between the direction (1, 1, 0) and the K”, -vectors, and the angle 6 € (0, 27) is in the

res
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plane orthogonal to the (1, 1, 0) direction. The non-zero z-component of the excitation current
density is (n = (K%, ¢, 6))
Z k?&‘? o de ¢
Jo = 23 Mol Eay|® P Sln(¢)( P (P (n) + 1, (s () (20)
where (o, = mem,/(m.+ mv) is the effective electron—hole mass, and the factor in the bracket
is purely imaginary. If the light polarization is in the (1, —1, 0) direction, the signs of both
terms with x-arguments change. Since the integral is the same, the current is opposite, in
agreement with figure 1(b).

4.2. The scattering current density J

In order to approximate J in equation (19), we need first the transport equations for the
intraband correlation functions G;ﬂ (k, ). Here we describe the hot-electron relaxation using
the integral KBE derived in reference [4]. In the weak-scattering limit, they can be approx-
imated by the integral Boltzmann equation (IBE) [4]. For simplicity, we also describe the
hot-carrier population only in the conduction band.

Laser light polarized along the (1, 0, 0) direction, as used in reference [4], gives a nearly
isotropic hot-electron distribution in the plane orthogonal to this direction, which is sufficiently
described by the angle ¢. In the present work, polarization along the (1, 1, 0) direction gives
a population squeezed in the (0, 0, 1) direction by about 25% (see figure 2, later). Moreover,
the shift vectors are also very anisotropic (see figure 3(b), later), so both angular variables ¢, 6
must be used. The field self-energy for interband transitions along the (1, 1, 0) direction can
be obtained from expression (10) in the form

Shy(,0) = —e(rs (K, 0.0) +12,(KC, . 6, 0)) Ewyy V2. Q1)

In the scattering self-energy X;..., the matrix elements M..(k, k') contain the linearized
structure factors y..(k, k') from (B.10). Since intraband relaxation is considered, the square
of the exponential prefactor from (B.10) gives y..(k, k') ~ 1, i.e. M..(k, k') = M(k — k')
from (5).

Then using the steps in reference [4], we arrive at the steady-state IBE:

2", 7, (n)

ﬁ‘c(na ¢59) h

{'Efcv(¢ 9)| /’ch n0

me e 1 S
iy V£ —s1n(¢) ——————fee(n — 1, ¢, 0)np(wgp)
2 Mo, K — kP ¢

res

am kmlzfc-c(n +1,6,0)1 +nB<wQ>>)} (22)

res res

where the distribution function on the nth level (e = E7, £ nhwgy/2)

res

" dh
Jee(n, ¢,0) = f w/ —k2G2 ek, @, 0, 0) (23)
is defined from the second-order G= ~ G5 /2!, expanded in terms of the interband field
self-energy X ;..,; the prefactor 2 in equation (22) cancels this 2!. Here
w(n) = —h/QIm =L, , (1)

is the particle relaxation time. It is still necessary to add in equation (22) radiative transfers of
carriers between the bands, but this is practically not reflected in J,, and J, is also negligible.
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To calculate J;, we also need a simpler expression for the scattering shift vector
Ry.45(k, k') in (B.4). A tractable approximation [9, 10] can be obtained if this is linearized
in terms of the wave-vector difference k — k/, around the centre ky = (k' + k)/2. For large
differences, where the errors can grow, the contributions to scattering are small, since the
elements |M (k — k')|? decay as |k — k’| 2. Direct algebraic manipulation gives the scattering
shift vector in (B.11) and (B.12). In the current formula (19), we expand the vector Ry gg in
each wave vector k considered in the Brillouin zone.
Finally, expression (19) for J; can be rewritten in the Boltzmann limit, where

App(k, ©) = —2Im G R (k, 0) ~ 278(hw — (k).

Since the correlation function D~ (q, w) for free phonons is also sharp, it can easily be
convoluted over frequency and momentum with Agg(k, ). If we consider in (19) only the
term linear in G g5, and neglect renormalization factors, then the approximate Jy:cc TEsults:

cM2 27 de 2 d@
T =Y / / 2 Sin(@) fue(n, 6, 6) f / 9 Sin(@)

k'
X +(km — k:,”“l) x Q)1 +ng(wg))
(% — k' e
n+l .
m( :‘les k:}:s ) X Q¢ (kres g (wQ)) 24)
Here the distribution from (23) has been used, where the integration over w and k = |k| from
equation (19) is already performed. A more consistent approximation in equation (24) can be
obtained by evaluating the vectors §2. at the points (k”,. + k*1)/2. Numerically, it is easier to

res res
average €., evaluated at the side points k", k!

5. Numerical results and discussion

In applications, we consider a typical experimental configuration for GaAs; the laser intensity
is I = 10° W cm™ at the light energy hwy = 2.1 eV (band gap E, = 1.5 eV), with light
polarized along the (1, 1, 0) direction. We calculate the steady-state J, from equation (20),
and J; is obtained by solving equation (22) for the intraband distribution fgg(n, ¢, 8), which
is then used in equation (24). The recombination current density .J, is also discussed.

We consider a model of GaAs with ten bands, without spin—orbit coupling. The matrix
elements r;; are calculated ab initio within the density functional theory in the local density
approximation using a plane-wave pseudopotential approach [26]. They are obtained at the
resonant momentum k°,  (resonant value for the light energy i) and at about 40 energy
(momentum) levels in the band ¢, corresponding to resonant values of LO phonon processes
(E},, at momenta k', ). The elements are found on a mesh (¢;, 6;), which can be reduced
due to symmetry to a size 10 x 20 points in the region ¢ = (0, 7/2), 8 = (0, ), giving in
total around 100 Mbyte of input data. The calculated current density J, corresponds to the
excitation between the heavy-hole bands (v = 3, 4 in equation (21)) and the lowest conduction

band (c = 5), while J; is illustrated only for the band ¢ = 5.

5.1. The electron distributions

In figure 2, we show cross-sections, orthogonal to the (1, 1, 0) direction, through the electron
population f,.(n, ¢, 6) in the conduction band, multiplied by sin(¢) as in equation (24). The
solid and four dashed lines on each plot correspond to the angles ¢ = in /10 (i =5, ..., 1),
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fee(n,9,0) sin(o) [10*cm?]

Figure 2. Cross-sections through the population f..(n, ¢, 0), multiplied by sin(¢), in the planes
orthogonal to the (1, 1, 0) direction. The values for levels n = 0, —1, —2 show relaxation of the
squeezing along the (0, 0, 1) and (1, 1, 0) directions. The solid and four dashed lines correspond
tothe angles ¢ = in/10(G =5,...,1).

while the shapes of the ovals give the 6-distribution. The levels presented are n = 0, —1, —2,
and the temperature is T = 300 K. Note that the population (n = 0) is squeezed in the (0, 0, 1)
and (1, 1, 0) directions, where the latter is seen in the fast decays with ¢ of the ovals for
n = 0. The population squeezed in the plane orthogonal to the (1, 1, 0) direction, around
¢ =~ 0, contributes more to the shift current than the population in the plane orthogonal to
the (1, —1, 0) direction. Therefore, these contributions with opposite signs do not cancel,
and J? can be non-zero. For light polarized in the (1, —1, 0) direction, the population is
squeezed in the orthogonal direction, according to the change in |r], &= rl |2 from (21), and J;
changes sign. At lower levels both squeezings become relaxed, which visibly shrinks the size
of the population. Relaxation of the anisotropy in hot-carrier distributions was also studied in
reference [27].

5.2. The shift-current density J,

In figure 3(a), we show the angular dependence of A,, = Im(r* _ri. +r), _r*

- wv:2"ve)» multiplied by
sin(¢), from expression (20) for J,. It is calculated for the angles as in figure 2, and for the
light polarized in the (1, 1, 0) direction. If the light is polarized in the (1, —1, 0) direction, A,,
looks the same, but the prefactor in equation (20) changes sign. This reflects the fact that the
structure of GaAs allows pumping from different atoms in both situations, but it gives J, = 0
for excitation by unpolarized light. For the present excitation, we obtain from equation (20)
the value J> &~ —45 A cm~2. This agrees in sign with figure 1(b) (negative charge of electrons)

and in value with reference [16].

5.3. The scattering current density J

Evaluation of J; is sensitive to numerical errors, resulting from approximate integrations on
the finite mesh for ¢, 6. We have corrected three problems in the calculation of J;... First, it
is the flow between level n and n =+ 1; second, the conservation of homogeneous distributions
(used as an initial test) in scattering between level n and n % 1; and third, the fact that non-
zero shift currents might result even for homogeneous distributions, which is a non-physical
consequence of the rough mesh and other approximations.

In figure 3(b), we show the z-component of the linearized scattering shift vector Ry, .

from the level n = 0; the cross-section is orthogonal to the (1, 1, 0) direction at ¢ = /2.
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Figure 3. Panel (a) shows the angular dependence of the factor A,, = Im(rfv;zr;‘fc + r;vl);zri‘,'(.),
multiplied by sin(¢), calculated from the level n = 0. The cross-sections are in the plane ortho-
gonal to the polarization direction of light (1, 1,0). It is opposite if light is polarized in the
direction (1, —1,0). This proves the mechanism in figure 1(b) to be correct, with zero current
JZ for excitation by unpolarized light. In panel (b) we present the approximate scattering shift

vector Rﬁﬂ(¢ =n/2,0) =~ (—k x Q.)%, calculated from the level n = 0. The cross-section is

as in (a). For the orthogonal cross-section, the contributions only change sign. Thus J¢. .. = 0 for

homogeneous electron distribution, resulting approximately for excitation by unpolarized light.

The behaviour of R;. . can be appreciated, if we substitute for the difference of wave vectors
in (B.11) and (B.12) with —k. This is because, on average, the wave vector k of the excited
electron becomes scattered in the —k-direction, even though the size k%, of —k is about an order
of magnitude larger than the difference k;,, — k-, The vector R, . changes sign, if the cross-
section is orthogonal to the (1, —1, 0) direction, providing zero current for a homogeneous
distribution. Because of the symmetry specified above, we can limit calculations to one quarter
of the Brillouin zone. Note that R, . has greater magnitude in the horizontal direction, where
the squeezed population in figure 2 is also larger, so J . becomes increased.

In figure 4(a), we present contributions to J< . from different electron levels in the
conduction band, as induced by phonon scattering [4]. The temperature is 7 = 300 K,
and the dashed, solid and dash—dotted lines correspond to the light excitation at the energies
corresponding to the levels n = —2, 0, 2 (using the same injection rate). The three results are
very different, since the shift vector R, . and, consequently, J: . change sign around level
n = 0 (see also figure 5). This effect is related to the form of the matrix elements, and it
appears by chance close to the level n = 0.

The contributions to the current density J;. .. are summed and presented in figure 4(b) in the
range T = 50-300 K. The excitation energies are labelled by the level numbern = 0, 5, 10. In
this interval the response changes sign, as expected from figure 4(a). J;. .. is about three orders
of magnitude smaller than JZ, but it increases for larger excitation energies (see figure 5). For
excitation around n = 0, Jg . is nearly temperature independent, while away from n = 0
it grows in size with T. In general the increase is small, since J_ .. depends weakly on the
scattering strength (see the discussion of equation (19)).

In figure 5, we show the dependence of the ratio Ji. ../ J; on the excitation energy, labelled
as in figure 4(b). As already mentioned, the ratio is negative close to the I" point; it changes
sign around n = 0 and approaches 1% at n = 15. Here we stop our calculations, since the
departure from the parabolic band approximation is large. The solid (dashed) curves cor-
respond to T = 300 K (T" = 50 K). Since J? roughly increases by 25% in this energy region,

J¢.. is responsible for the increased value of the ratio. Note also that at higher excitation
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Figure 4. Panel (a) shows contributions to the scattering shift-current density J . from different
‘electron levels’, due to scattering on LO phonons at 7 = 300 K. The dashed, solid and dot—-dashed
lines correspond to tuning the laser to the energy of the level n = —2, 0, 2. The change of sign of
the contributions is due to the fact that RY, . at angles ¢ = /2 changes sign at these excitation
energies. In panel (b) we present the temperature dependence of the scattering shift-current density
]; cc Calculated as a sum of its components in (a). The situations correspond to tuning the laser
energy to the levels n = 0,5,10. JZ _ changes sign and slightly increases with temperature,

s;cc
especially at larger n.

Figure 5. The ratio of the scattering
and excitation shift-current densities
Js.ce/Je, calculated as a function of
excitation energy, labelled in phonon
levels. The solid (dashed) lines
correspond to 7 = 300 K (7" = 50 K).
The ratio changes sign around n = 0

from positive to negative and increases
in value up to 1% for the present
n excitation energies.

energies the current density J3 . is opposite to JZ, which could be intuitively expected. The
ratio can be larger for relaxation to/from local side minima in the band structure.

5.4. The recombination current density J,

Finally, let us briefly discuss the recombination current density J,. Since the momentum
relaxation time 7, is several hundreds of fs, and the recombination time 7, is about 1 ns, only
a tiny fraction of carriers recombine before randomizing their momenta. The hot carriers first
isotropically fill the Brillouin zone, and in particular the distribution is practically the same
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in the (1, 1,0) and (1, —1, 0) directions. It is useful to recognize that J, and J, resulting
from transitions between two particular states have opposite signs. Therefore, contributions
to J, from the population in the above directions are the same in magnitude, but they point
in the (0, 0, —1) and (0, 0, 1) directions. This means that .J, is practically zero, as suggested
by figure 1(b), where the recombining electrons going from Ga atoms do not distinguish
between the As atoms. The same observation is expressed in reference [1] in a more general
way—namely, by saying that J, is zero in non-pyroelectric materials.

Recombination through trap sites from impurities would give non-zero microscopic shift
currents, but its macroscopic value J, averaged over all impurity positions should be negligible.
It would also be interesting to study the shift current related to transitions to excitonic levels.
Since these levels are energetically below the band edge, they can be expected to give different
(smaller) shifts in real space than in the interband transitions. These shifts would also vary
level by level, and J, could also be non-zero.

6. Conclusions

We have theoretically investigated laser beam generation of the shift-current density in bulk
NCS semiconductors. The excitation, scattering and recombination components .J, ; , reflect
asymmetric carrier flows in elementary cells, induced by the relevant processes. The system
was described by NGF methods, which, in combination with the length gauge, give a consistent
approach to this problem. Expressions for J, ; were derived for steady-state excitations, in
terms of the carrier transition rates and the space shift vectors R, ;.

For practical purposes, we have simplified the formalism to the Boltzmann limit and
demonstrated a tractable numerical scheme. Within this approximation, we have described
optically excited GaAs in the presence of LO phonon scattering. Light-induced electron
transitions between the lowest conduction band and the nearest heavy-hole bands were
considered. For light polarized in the (1, 1, 0) direction, the excitation current density .J, in the
(0, 0, —1) direction was obtained. The scattering current density J;... was calculated from the
hot-electron distribution in the conduction band. It is about two orders of magnitude smaller
than J,, and the recombination current density J, can be neglected, since the momentum
relaxation causes electrons to recombine with the same strength with atoms placed in opposite
directions. Therefore, steady-state pumping of electrons across the crystal can be realized.

The shift current has potential applications in ultrafast photoelectric devices, since the
response is practically instantaneous. Modifications of the shift current might be observed in
low-dimensional structures, heteropolar nanotubes [28] or molecular systems.
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Appendix A

Let us first compare current expressions from reference [16] with our results. The sum of the
term (J¢ ) and d(P(Z) )/dt, there, corresponds to the excitation shift-current density J,

intra inter
from our equation (12), if scattering is neglected. The term (J¢ ) there corresponds to the

intra
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excitation part of the ballistic current—equation (12) with equal bands « = 8, and no transport
vertex corrections to G .

Next, we show how equation (14) can be obtained from equation (13), in analogy to
reference [16] Two situations can be considered in (13), where either one of the two field self-
energies E ap involved is interband and the other is intraband, or both of them are interband.
In the first case the interband self-energy in equation (13) is between the two Green functions,
since these are from different bands (empty/full), to give real transitions. The intraband self-
energy in front or behind can be switched by partial integration (see the comment near (9)) to
give a derivative, with a prefactor 1, over the first or last variable in the first or second term
in equation (13) with G1<; - These two can be combined into a derivative 8G1<; of (k,k)/0k,
and transferred by partial integration to the derivative in the prefactor [16] —dr.g(k)/dk. The
resulting contribution to J, in (13) is

dw
AJ, = 2ie° / / Gyt 2 ey DB L,

X (GO:aa (k, U))GO;/S;.‘} (k, w = a)O)) (A.1)
where we employ the definition [16]

rpe (k)
rﬂzx;a(k) — Bk“

In (A.1) the sum over bands o % f selects real transitions between valence and conduction
bands, tuned to the laser frequency wgy. Then, the top (bottom) signs correspond to @ = c,
B=v(a=vB=0c).

The second situation adds the expression 74, (k) ., ., s[5, (k)] (k) — L (R)ES,(K) ]
to the bracket (—irgq;q (k)& ﬂ(k)) in (A.1). These terms can be substantially simplified with
the following identity [16]:

resp (k) — by (k) =1 Y [ED (K)&S, (k) — &2, (R)ED, (K] (A3)
y#a,p

—i(5gp(k) — &30 (k) Tpa (). (A.2)

which can be used to exchange the vector (b) and derivative (a) components in raﬂ (k). If we
substitute (A.3) in (A.1), and shift arguments, then the square brackets cancel and expression

(14) results.

Appendix B

Here we derive the expression for the intraband scattering shift vector R.gs(k, k'), used in
equation (19), and linearize it in the wave-vector difference k — k'.

We assume [9, 10] that the commutator of the operator « in (2) and M in (5) vanishes,
i.e., [z, M] = 0. In the Bloch representation, we can easily sum over intermediate states and
momenta. Upon separating out the terms of the position operator that are band diagonal, we
arrive at the following sum rule:

Z TBa (k)May(kv k,) - Z Mﬁa (k, k/)ray (k/)
a#p aFty

: 3 8 / / /
= - l(ﬁ + ﬁ>Mﬁy(k, K') + Mg, (k, K')(,, (K) — Eg5(K)). (B.1)

Aided by equation (B.1) and writing the matrix elements Mpgg(k, k') in the form
Mg (K, k') = Mg (k, k)| *F) (B.2)
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it is now straightforward to simplify the bracketed terms in equation (18) for y = 8:

( > r () Mup (k. k') = >~ Mpa (., k/)r;ﬁ(k/))Mﬂﬂ (K, k)
a#p P

3
ke

Here the c-component of the scattering shift vector Ry.gg(k, k') is

a

Rg;ﬁﬁ (k, k/) = (Bkc

It has properties similar to those of the excitation shift vector R,.qs (k) in (16). R;.pp(k, k') is

invariant under phase transformations of Bloch functions, and anti-symmetric upon exchanging

k and k', ie. R,.pp(k, k') = —Ry.pp(K', k), which follows directly from equation (B.2).

Therefore, the real (first) part in equation (B.3) is also anti-symmetric, while the imaginary

(second) part is symmetric, and these two give different contributions to the scattering shift-
current density J;.

Numerically, it is more convenient to evaluate the shift vector directly from the matrix
elements Mqg(k, k'), which are accessible to ab initio calculations. Then, considerable care
has to be taken in order to maintain the invariance under phase transformations. We make use
of the specific form of Mgg(k, k'), with the structure factors ygg(k, k') given in equation (5),
to evaluate R, 44 (k, k') from

ol / / 1 8 /
= RS 45 (k. K Mgg (K, k)| — 5( + m)wﬁﬂ(kz k). (B.3)

0 .
+ W)"W (k, k) + 855 (k) — £55(R). (B.4)

c no_ 1 * / 0 0 / c N g€
RS 45 (k, k') = Im [—W(k’ ik ><—akc " —ak,f)y,sﬂ(k, k )} +E55(K) — E55(R).
(B.5)

Since ypp(k, k') only depends on the band structure, it is clear that the shift vector R;.gp
is an intrinsic property of the material and does not depend on the nature of the scattering
mechanism.

Equation (B.5) can be used once the ygg(k, k') are found. For practical evaluations it is
much easier to obtain their linearized form in the difference k — k’. We can evaluate u g (x)
and ugy () as well as their derivatives from u gy, (x) at ko = (k + k') /2 using k - p perturb-
ation theory [29]. This allows us to obtain corresponding perturbation theoretical expressions
for ypg(k, k'), Egp (k) and the shift vector R;.pp(k, k).

The linearized u gy, () results in the form

Upkysak(@) = e R0 AK (uﬁku @) =1 Ak Y v (ko)uak, (m)) (B.6)
a#p

where Ak = k — k. The exponential prefactor reflects the change of the phase in the
Bloch wave u gy (), which is otherwise completely undetermined. As mentioned above,
this phase is of paramount importance, since we have to take derivatives with respect to k
from the Bloch wave ug,.ar(x) (see equation (B.5)). Therefore, we have to consider all
k-dependencies of ugg,+ar(x) to ensure phase transformation invariance of our results. In
addition, it follows directly from equation (B.6) that

dugy(x)

e OB DRI OURAC) (B.7)

aFp

which is consistent with equation (3), since the fast components of Bloch functions uy ()
and ”2 (@) are orthogonal in the unit cell.
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Using in equation (B.5) the derivative of expression (5), taken with the help of equ-
ation (B.7), gives the exact results

R?;ﬂﬂ (k. k) = m Im[iV;ﬂ (k, k/)Pg;ﬂﬂ (. kD] B.8)
Pl k) = 3 (s (k) ap (e, K — vpa (R, Krs (K)).
oFp
Equation (B.6) may now be used to obtain the k - p perturbation expression for rg, (k):
ORI <rﬁa (ko) + > D (Ak -7, (ko)Tou (ko)aw). (B.9)

y#B oFa

Similarly, one can obtain the expression for yg (k, k'):

Voo (k, k’) _ ei(éﬂﬂ(ko) Ak—E44 (ko) AK') (5,60: —iAk- Z Tou (ko)Sﬂ(r LiAK - Z Tgo (ko)s(m)
oFuo B#o
(B.10)

where Ak = k — ko, Ak’ = k' — ky. Upon inserting these results in expression (B.8) and
making use of the vector identity a x (b x ¢) = b(a - ¢) — c(a - b), we finally arrive at the
linearized expression for the scattering shift vector:

R,.pp(k, k') ~ (k — k') x Qg(ko) (B.11)
where the vector Qg (ko) is defined as
Qp(ko) = Vi x Egg(ko) = izrﬁa(ko) X Top (ko). (B.12)
aFp

The last expression for V; x €44 (ko) is also derived in reference [30] (equation (13)). A
standard analysis using the symmetry properties [14, 17] of the rqg(ko) shows that Qg (ko)
represents an axial pseudo-vector [10] and, as a consequence, can be non-zero only if the
material does not possess a centre of inversion. It can be evaluated numerically from ab initio
values of the respective matrix elements.
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