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Adaptive Evolution of Peptide Inhibitors for Mutating
SARS-CoV-2
Parth Chaturvedi, Yanxiao Han, Petr Král,* and Lela Vukovíc*

The SARS-CoV-2 virus is currently causing a worldwide pandemic with
dramatic societal consequences for the humankind. In the past decades,
disease outbreaks due to such zoonotic pathogens have appeared with an
accelerated rate, which calls for an urgent development of adaptive (smart)
therapeutics. Here, a computational strategy is developed to adaptively evolve
peptides that could selectively inhibit mutating S protein receptor binding
domains (RBDs) of different SARS-CoV-2 viral strains from binding to their
human host receptor, angiotensin-converting enzyme 2 (ACE2). Starting from
suitable peptide templates, based on selected ACE2 segments (natural RBD
binder), the templates are gradually modified by random mutations, while
retaining those mutations that maximize their RBD-binding free energies. In
this adaptive evolution, atomistic molecular dynamics simulations of the
template-RBD complexes are iteratively perturbed by the peptide mutations,
which are retained under favorable Monte Carlo decisions. The computational
search will provide libraries of optimized therapeutics capable of reducing the
SARS-CoV-2 infection on a global scale.

1. Introduction

The very fast spreading of a severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) in the human population has al-
ready led to hundreds of thousands of fatalities and dire socio-
economic effects worldwide. Therefore, many concepts and
strategies were initiated to identify drug targets,[1] develop effec-
tive therapeutics and vaccines against SARS-CoV-2,[2,3] including
the optional use of therapeutics developed for other purposes.[4–7]

Some of the strategies have focused on direct targeting of the
spike (S) protein,[8,9] located on the outer surface of the SARS-
CoV-2 virion, which initiates the cell entry process. This process
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starts by binding of the receptor binding
domain (RBD) on the S protein to a hu-
man host receptor angiotensin converting
enzyme 2 (ACE2), followed by a proteolytic
cleavage and release of its S1 subunit.[10]

Then, the remaining S2 subunit undergoes
a conformational change, which eventually
leads to virus–host membrane fusion.[11]

The S protein RBD of SARS-CoV-2 binds
more strongly to ACE2 than SARS-CoV.[12]

This fact, together with other innovative
characteristics of the S protein, including a
furin preactivation of the cleavage site, and
a hiddenRBD, likely contributes to the large
infectivity of SARS-CoV-2.[12]

SARS-CoV-2 is mutating and further
adjusting to the human environment,
like other novel viral pathogens. Many
strains of SARS-CoV-2 have already been
detected.[13,14] Some mutations, such as
D614G on the S protein, lead to rapid and

enhanced viral transmission,[15] causing this strain to locally
dominate. The mutating SARS-CoV-2 coronavirus could also
adapt to new hosts, such as domestic animals.[16] Therefore, to
mitigate the large spreading and effects of SARS-CoV-2, it is im-
portant to identify classes of therapeutics that could be rapidly
developed to act against multiple coronavirus strains.
Here, we address this problemby introducing libraries of adap-

tive peptide therapeutics that could block different S protein
strains from interacting with ACE2. With the use of advanced
computational methods, we show that adaptive evolution of suit-
able peptide templates can provide multiple inhibitors for com-
petitive binding to different S protein variants. Using libraries
of peptides adapted to different S protein variants could prevent
their mutational escape, in analogy to using cocktails of S pro-
tein antibodies.[9] Our algorithm can evolve peptide inhibitors
that competitively bind to (block) a set of desired targets, such
as different S protein variants, S proteins with glycan shielded
sites,[17–19] and other related systems.[20]

2. Results and Discussion

2.1. S Proteins Variants

Over the time and geographical regions, SARS-CoV-2 virus has
so far evolved into more than 104 mutated strains, shown in the
mutation tree of publicly available unique genome sequences
(through June 2020) in Figure 1a.[21] Out of these mutations, so
far (June 2020) 25 have been recognized in the S protein RBD,
as summarized in Figure 1b. Five of these mutations include
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Figure 1. Mutations of SARS-CoV-2. a) Time-dependent mutation tree of SARS-CoV-2 colored according to geographical regions of origin (through June
2020).[21] b) Twenty-five single mutations identified in RBD of the S protein. c) Five amino acid mutations on RBD in contact with the ACE2 receptor. d)
Binding free energies are evaluated with the MMGB-SA method for the ACE2-RBD complexes, including the originally reported RBD (wild type, labeled
as WT) and the five mutant RBDs listed in panel (c).

amino acids that form a part of the ACE2-binding surface (A475V,
G476S, S477I, V483A, and V503F), as highlighted in Figure 1c.
In Figure 1d, we present the RBD-ACE2 host-receptor bind-

ing free energies, ΔGMMGB-SA, obtained in the presence of these
five mutations. The 5 RBD:ACE2 complexes are simulated for
30 ns, and their average binding energies are obtained in the
last 15 ns. The originally reported RBD and the S477I RBD
have the strongest binding to the human ACE2, ΔGMMGB-SA ≈
−50 kcal mol−1, while the other systems bind with ΔGMMGB-SA ≈
−(40–50) kcal mol−1. In order to block all these RBD vari-
ants, the peptide inhibitors should have comparable or lower
ΔGMMGB-SA values.

2.2. Adaptation of Peptides by Single Mutations

Two ACE2-based peptide structures, shown in Figure 2a, are se-
lected as templates for the first generation peptide inhibitors of
the S protein.[8] The smaller template-1 includes single truncated
𝛼1 helix of ACE2 (amino acids 21–43), and the larger template-2
includes two 𝛼1𝛼2 helices of ACE2 (amino acids 19–83). In the
adaptive evolution search for optimized therapeutics, the selected
ACE2-extracted peptide templates will be graduallymutated to in-
crease their binding strength to RBD.
In recent mutagenesis experiments, the whole ACE2 with sin-

gle mutations in regions directly contacting RBD were examined
for their binding to the original S protein.[22] To perform pre-
liminary testing of our adaptive evolution search of peptide ther-
apeutics, we first selected the most fit mutants from these ex-
periments, and implemented their mutations in our templates-

1,2. We simulated 22 peptides, that is, the original templates and
their 10 single mutants, complexed with the original S protein
RBD. Their free energies of binding, ΔGMMGB-SA, were evaluated
in 100 ns simulations and presented in Figure 2b. Template-1
binds to RBD with ΔGMMGB-SA ≈ −19 kcal mol−1, while its mu-
tants have higher affinities giving ΔGMMGB-SA ≈ −(24–35) kcal
mol−1. In all cases, template-1 significantly changes its conforma-
tion in the bound configuration, as the helix loses the curvature
observed when within ACE2, and the hydrogen bonding between
Glu35 (template-1) and Gln493 (RBD), enabled by the helix cur-
vature, is broken.
In contrast, template-2 hasmore direct contacts with RBD than

the shorter template-1 variants, so it binds to it more strongly,
ΔGMMGB-SA ≈ −36 kcal mol−1. However, only two template-2 mu-
tants (H34A and K31W) have higher affinities to RBD than the
original template-2, having ΔGMMGB-SA ≈ −45 kcal mol−1. These
simulations also revealed that peptides with a stronger binding
covered larger RBD sections (Figure S1, Supporting Informa-
tion), and reduced the RBD exposure to other potential binding
partners. These results show that the experimental results ob-
tained for mutated ACE2[22] (Figure S2, Supporting Information)
can provide a good guidance in the mutation of template-1, but
the same mutations are less effective in the larger template-2.

2.3. Adaptive Evolution of Peptide Inhibitors

The above results have clearly demonstrated that suitable
peptide templates with appropriate mutations can acquire a
strong binding to specific targets. To optimize such peptides
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Figure 2. Modeling of peptide-RBD complexes. a) Complexes of S protein RBD (blue) and two peptide templates (red). Locations of five S protein
mutations examined in the present work are marked by blue spheres. Amino acid residues changed in singly mutated peptides are marked by yellow
spheres. b) Free energies of binding,ΔGMMGB-SA, between the originally reported S protein RBD and the wild type or singlymutated ACE2-based peptides.
Locations of mutated peptide amino acids are highlighted in panel a. c) Snapshots of initial and optimized template-1 peptides binding to the original
RBD. The sequence of the optimized peptide was obtained after 100 mutation attempts, with 10 ns long MD simulation after each mutation. The final
peptide with the optimized sequence was further relaxed in a 175 ns MD simulation. The initial peptide is shown as a red helix, with amino acids that
are subsequently mutated shown in thin faded yellow licorice. The optimized peptide is shown as an orange helix, with mutated amino acids shown in
thick yellow licorice. d) Adaptive evolution of template-1. The plot shows the binding free energies, ΔGMMGB-SA, between the peptide and the original
RBD, presented as a function of the performed mutation, where the peptide:RBD complexes are relaxed for 10 ns after each mutation attempt. e) The
time evolution of ΔGMMGB-SA between the final optimized peptide and the original RBD. The average value, obtained from the last 75 ns of the trajectory
(gray), is ΔGMMGB-SA = −57 kcal mol−1. The faded green line shows the data points calculated every 0.1 ns, and the dark green line shows the running
average. f) Initial and optimized sequences of template-1 peptides. The final peptides were optimized for binding to the original and mutant RBDs, with
peptide-RBD complexes relaxed in 10 ns MD simulations after each attempted mutation.

against specific viral strains, we have developed combined
mutation/selection (evolution) computational algorithms which
can guide a multi-step adaptive evolution of the peptides: 1)
Random mutations are introduced into random positions of
the peptide templates. 2) Short MD simulation trajectory of
the mutated-peptide:RBD complex are run and followed by a
selection or rejection of the mutation via Monte Carlo (MC)
sampling using a Metropolis criterion applied to the change of

the free energy of peptide-RBD binding, ΔGMMGB-SA (Section 2).
3) The mutation/selection process is iteratively repeated until
the binding affinity of peptides to the target S protein RBD is
satisfactory (Section 2). 4) Additional evolution of the molecules
might be considered after the MC decisions to allow for a better
internal relaxation of the molecules. Due to a partly stochastic
nature of MD simulations, the randomness in mutations, and
the MC selection, different peptides can be obtained in separate
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trajectories that correspond to separate local minima of the
free energy surface. These peptides form a pool (ensemble) of
potential therapeutics evolved for a selected viral strain, which
can be further enriched by considering multiple viral strains.
In Figures 2c–e, Figure S3, Supporting Information, and Table

S1, Supporting Information, coupling of template-1 to RBD was
optimized in the adaptive evolution, where 10 ns MD simulation
trajectories were generated after each trial mutation of template-
1. Of the 100 mutations attempted, 13 mutations were accepted,
and 11 amino acids were changed (individual residues can be
mutated more than once). Figure 2d reveals the progression of
binding free energies with the mutations of template-1, starting
fromΔGMMGB-SA = −19 kcal mol−1. As detailed in Figure 2c, dur-
ing the adaptive evolution, the mutating helical peptide lost its
bending (this change is independent of mutations) and multi-
ple initial contacts with RBD. At the same time, it shifted with
respect to its initial position and formed many new contacts.
Peptide residue E37 formed a salt bridge with the original RBD,
while residues Q24, Y26 (mutated), Q30 (mutated), S41 (mu-
tated), and R42 (mutated) formed hydrogen bonds of varying sta-
bility with the original RBD. The resulting peptide bound to RBD
with ΔGMMGB-SA = −70 kcal mol−1 at the end of thirteen 10 ns-
long trajectories (associated with individual accepted mutations).
As shown in Figure 2e, additional 175 ns relaxation of this pep-

tide resulted in a slightly less favorable ΔGMMGB-SA ≈ −57 kcal
mol−1. Therefore, adaptive evolution requires sufficiently long re-
laxation times for a good stabilization of the whole system. Short
relaxation times may result in incomplete peptide adjustments
and free energies that can be misleadingly favorable. Moreover,
a faster MC convergence could be achieved by considering the
whole free energy changes rather than the peptide-RBD binding
free energies. However, internal reorganizations of molecules in-
evitably take part in long trajectories, so the difference in binding
energies alone might be sufficient for the MC decision, as long
as additional relaxation is allowed between individual MC steps
(point 4 in the method).
Next, we adaptively evolved template-1 coupled to three sepa-

rate singly-mutated RBDs, chosen from Figure 1d. For simplic-
ity, 100 mutations were attempted, followed by 10 ns simula-
tions after each attempt. The adaptive evolution gave peptides
withΔGMMGB-SA ≈ −(45 to 70) kcal mol−1, as summarized in Fig-
ure 3a–c and Figure 2f. Peptides targeting A475V and G476S
RBDs each had five accepted mutations, respectively, while pep-
tides targeting S477I RBD had 19 accepted mutations. In the
A475V RBD case, one of the early accepted mutations lead to
breaking of the helix secondary structure, and thus to a dif-
ferent peptide-RBD binding mode. This shows that individual
alpha helices without additional stabilization, such as by side
branching,[23] might be too simplistic therapeutics.
In Figure 3d, the adaptive evolution was performed with a

more stable template-2 (𝛼1𝛼2), but random mutations were only
introduced into the 𝛼1 helix, which was in direct contact with
the original RBD. After 12 accepted mutations and 10 changed
amino acids (listed in Table S2, Supporting Information), the
binding strength increased from ΔGMMGB-SA = −36 kcal mol−1

to −60 kcal mol−1. Therefore, the adaptively evolved template-2
can compete with thewhole ACE2, havingΔGMMGB-SA ≈ −50 kcal
mol−1 (Figure 1c). Both the initial and optimized template-2 pre-
serve the curvature of the 𝛼1 helix, despite themutation of E35 (to

Figure 3. a–c) Adaptive evolution of template-1 coupled with singly-
mutated RBDs. d) Adaptive evolution of template-2 coupled with the origi-
nal RBD. After attemptedmutations, peptide:RBD complexes were relaxed
in 10 ns simulation steps.

Y35), which is observed to interact with Q493 (RBD). This fea-
ture preserves the binding pattern observed in ACE2:S protein
RBD complex.[1,24] However, the salt bridge between D30 (initial
peptide) and K417 (RBD) (shown in Figure S4, Supporting Infor-
mation for template-2 optimized with 1 ns simulations after mu-
tations) is lost in the peptide optimized with 10 ns simulations
after mutations.
In summary, we have demonstrated that ACE2-based peptide

templates can be adaptively evolved by computation using muta-
tion/selection processes to form optimized inhibitors for a strong
and competitive S protein RBD binding. The developed approach
can be used to design peptide inhibitors based on templates ex-
tracted from different ACE2 polymorphs, including those from
other species,[25] and other proteins binding to viral pathogens.
The optimized inhibitors obtained in different evolution runs
can be collected to form libraries of suitable therapeutics for dif-
ferent RBD variants. Cocktails (ensembles) of peptide therapeu-
tics could be delivered by different means to provide a broad-
spectrum protection against different SARS-CoV-2 strains.

3. Computational Methods

MD Simulations: The simulated peptides template-1 (amino
acids 21–43 of ACE2) and template-2 (amino acids 19–83 of
ACE2) were separately bound to the S protein RBD. Template-1
size is typical of peptides that can be chemically synthesized
easily and quickly for experimental testing. Since the simulations
and ref. [8] demonstrated that the extracted ACE2-based helix
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of template-1 loses the curvature and shape complementarity to
the RBD binding site, a larger template-2 was also selected for
sequence optimization. Template-2 contains two helices that can
preserve helix curvature and shape complementarity to the RBD
binding site. All structures were directly based on the crystal
structure of the human ACE2 protein bound to the SARS-CoV-2
Spike protein RBD (pdbID: 6LZG).[10] The mutations in peptides
and RBD were introduced using the psfgen plugin in VMD.[26]

The systems were simulated using NAMD2.13[27] and the
CHARMM36 protein force field.[28] The simulations were con-
ducted with the Langevin dynamics (𝛾Lang = 1 ps−1) in the NpT
ensemble, at a temperature of T = 310 K and a pressure of
p = 1 bar. The particle-mesh Ewald (PME) method was used to
evaluate Coulomb coupling, with periodic boundary conditions
applied.[29] The time step was set to 2 fs. The long range van der
Waals and Coulombic coupling were evaluated every 1 and 2 time
steps, respectively. After 2000 steps of minimization, the solvent
molecules were equilibrated for 1 ns, while the complexes were
restrained using harmonic forces with a spring constant of 1 kcal
(mol Å)−1. Next, the systems were equilibrated in 100 ns produc-
tion MD runs with no restraints.
MMGB-SA Calculations: The molecular mechanics general-

ized Born–surface area (MMGB-SA) method[30,31] was used to es-
timate the relative binding free energies between peptides (or
ACE2) and RBDs. The free energies were estimated from sep-
arate MMGB-SA calculations for three systems (peptide/ACE2,
RBD, and the whole complex) in configurations extracted from
the MD trajectories of the whole complex in the explicit solvent.
The MMGB-SA free energies of the extracted configurations of
the three systems were calculated as

Gtot = EMM +Gsolv-p +Gsolv-np − TΔSconf , (1)

where EMM, Gsolv-p, Gsolv-np, and ΔSconf are the sum of bonded
and Lennard-Jones energy terms, the polar contribution to the
solvation energy, the nonpolar contribution, and the conforma-
tional entropy, respectively. The EMM, Gsolv-p, and Gsolv-np terms
were calculated using the NAMD 2.13 package[27] generalized
Born implicit solvent model,[32] with a dielectric constant of
the solvent of 78.5. The Gsolv-np term for each system config-
uration was calculated in NAMD as a linear function of the
solvent-accessible surface area (SASA), determined using a probe
radius of 1.4 Å, as Gsolv-np = 𝛾SASA, where 𝛾 = 0.00542 kcal
mol−1 Å−2 is the surface tension. The ΔSconf term was ne-
glected, since the entropic contribution differences nearly can-
cel when considering protein–protein binding of single residue
mutants.[33,34] Moreover, the entropy term, which is often cal-
culated with a large computational cost and low prediction ac-
curacy, is likely to be similar for the studied systems, which
differ in single or several mutations. Since the Gtot values are
obtained for peptide configurations extracted from the trajec-
tories of complexes, Gtot does not include the free energies
of peptide reorganization; the correct free energies of bind-
ing should consider configurations of separately relaxed sys-
tems. The approximate binding free energies of the studied
complexes were calculated as ⟨ΔGMMGB-SA⟩ = ⟨Gtot(P∕ACE2 −
RBD) −Gtot(P∕ACE2) −Gtot(RBD)⟩, where P/ACE2 represents
peptides or complete ACE2, and the ⟨ averaging ⟩ is performed

over configurations within the second half of the calculated tra-
jectories.
Adaptive Evolution Algorithm: A mutation/selection algo-

rithm was developed and used to iteratively increase the affinity
of binding between peptide templates and the S protein RBD.
The algorithm involved sequences of steps combining molecu-
lar dynamics simulations and MC decisions using the Metropo-
lis criterion,[35,36] which resulted in MC sampling of the pep-
tide sequence space. Initially, the selected peptide template (di-
rectly extracted from ACE2) complexed with RBD was equili-
brated for 100 ns. Then, the free energy of binding of the pep-
tide:RBD complex, ΔGbefore

MMGB-SA, was evaluated. Next, a random
mutation was introduced at a random position in the peptide,
followed by a short 1–10 ns equilibration in MD simulations of
the complex, and evaluation of the ΔGafter

MMGB-SA free energy of
binding of the complex. Finally, the mutation was accepted if
ΔGafter

MMGB-SA < ΔGbefore
MMGB-SA or if the Metropolis criterion was sat-

isfied,

exp[−(ΔGafter
MMGB-SA − ΔGbefore

MMGB-SA)∕kBT ] > r (2)

where r is a random number in the (0,1) interval. If the mu-
tation is accepted, then the new peptide becomes the new ref-
erence peptide and its ΔGMMGB-SA becomes the reference value
ΔGbefore

MMGB-SA for the next attempted mutation. In each run of the
algorithm, 100–200 mutations were attempted on peptide tem-
plates, as stated in the results.
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